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abstract

N   is a topic that has received a sub-
stantial amount of attention over the past few decades from

two scientific communities, divided in their interests between ends
and means. The first, composed of computer scientists searching
for new computational techniques has been wholly focused on end
results. As a result a large body of optimization techniques has
been amassed for modifying networks to perform arbitrary tasks.
But this has been done without much thought being given to how
such models could correspond to, or be implemented in, biologi-
cal form. The second community, experimental neuroscience, ad-
dresses behavioral end results as well, but due to its bottom-up
approach—and the young age of the field—has much to say about
the means and mechanisms by which networks change on a micro
level, but has only rarely been able to offer explanations that span
all levels, from molecular mechanism to organism behavior.
One commonality in the two approaches is that neural network

learning is typically treated as the problem of setting synaptic con-
nection strengths to better perform a task. This requires some sort
of feedback by which a behavioral-level readout of success can be
transmitted back to the network responsible for producing that be-
havior, and modifications can be made to reduce whatever error is
currently being made.
The computer science approach proposes the existence of a

Supervisor external to the network which mediates this transfer,
reaching in and causing synaptic plasticity to adjust function un-
til some optimal state is reached. However, anatomical data sug-
gest that direct synaptic modification by such a supervisor circuit
would be infeasible. We investigate supervision at the level of neu-
rons rather than synapses. By modulating the response properties
of cells in the network, this form of supervised learning is able to
successfully train a network to perform a function approximation
task. We examine the nature of this modulation, consider its im-
plications for supervised learning, and propose a plausible neural
basis for this Supervisor circuitry.
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Preliminary Matters

L   terms used in the sciences, ‘learning’ has been taken from
common usage and invested with a more concrete meaning within the con-

text of neuroscience. Unfortunately in this case it has received not a single defi-
nition, but a multitude of them, each specific to a particular level of inquiry, and
most in conflict with one another. Thus it is important to establish from the be-
ginning the scope of the investigation discussed in these pages, and accordingly
the breadth of the claims made therein.
In the context of the work that follows, learning can best be thought of as

a set of functional changes in a neural network coordinated in such a way as to
improve its performance on an arbitrary processing task. This is a topic which
has received much attention previously using the computational modeling meth-
ods that we will employ. Thus, to begin, we will first define the terms of this
investigation, review the relevant prior approaches to the problem, then outline
our own attempt to answer these questions.

Overture

Defining learning simply as a pattern of coordinated, functional changes man-
ages to capture the spirit of our view of the phenomenon, but clearly glosses over
a set of sub-problems which arise when one tries to explain what is happening in
an actual living system during such a process. First there is the issue of precisely
what form these changes take.
To change the function of a neural network there are two primary locations

at which to act: the synapses connecting the neurons, or the neurons themselves.
Surely both synaptic plasticity and modifications intrinsic to the neurons oc-
cur, but the traditional assumption is that synaptic change is predominant—
particularly on the fast time scales associatedwith adaptive, task-dependent learn-
ing. Later we will suggest that intrinsic changes might act as precursors to synap-
tic change.
Regardless of the actual intrinsic/extrinsic modification balance in biologi-

cal systems, most of the sorts of behavioral change one wishes to bring about
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in an artificial neural network can be realized through synaptic plasticity alone.
As a result, much prior work—at least from the artificial intelligence () or
machine learning () perspective—has focused upon the modulation of synap-
tic strength to influence network function. However even having simplified the
problem by considering only changes extrinsic to the cells, there are still two
subproblems which are typically conflated:

. A strategy for choosing which synapses to strengthen andwhich toweaken
is required.

. A mechanism must be provided by which to change these synaptic cou-
pling strengths to their desired values.

 

It is to this question of how best to go about altering synaptic strengths in order
to bring a network to some functional end state that the / project has de-
voted itself, possibly to the exclusion of other considerations. As a result there
is an extensive library of different algorithms which are all optimal in different
ways, whether in terms of sheer speed or in catering to one form of ‘biologi-
cal plausibility’ or another (Hinton, ; Kearns and Vazirani, ; Narendra
and Thatachar, ; Sutton and Barto, ; Dayan and Abbott, ). Thus,
given a network and a desired function, these off-the-shelf strategies will find the
proper set of synaptic weights to perform that task.
In addition, there is a wealth of biological data documenting the properties

of functioning, tuned neural systems (Dickinson, ; Gallistel, ). This
again allows us to verify that one of these end states is ‘realistic’ along any number
of parameters, ranging from firing rates and mix of conductances in individual
cells to the overall balance of excitation and inhibition within the network.
Thus we have a clear picture of what a successful network ought to look like,

both in the aggregate and in terms of the relative strengths of each synapse in the
network. Presuming there is a way to arbitrarily impose synaptic strengths on a
network, the problem is solved. The difficulty is that this presumption is untrue.

 

It is here that the -supplied approaches to ‘training’ a network begin to break
down. By focusing predominantly on finding a proper set of synaptic strengths
for a given task, the problem of putting those weights in place has typically been
treated as a secondary consideration. Though ultimately this poses as great a
problem as determining what those weights ought to be in the first place.

..   · 

Experimental data has provided a fairly solid picture of how synapses change
at the most local levels. But it is less obvious how these single-synapse or single-
pair rules function in the larger network to produce coordinated, goal directed
tuning of its activity. Instead, most of what has been discovered points to an
enhancement of preëxisting, local function rather than the creation new special-
izations within the network.
However, there is a pair of key results that will be returned to repeatedly

in the chapters that follow. First is the well established correlative strengthening
effect (i.e., Hebbian Plasticity) in which the simultaneous activity of a pre- and
postsynaptic cell will increase the efficacy of the synapse connecting them (Bliss
and Collingridge, ; Bredt and Nicoll, ).
The second effect is more recently characterized, but also seems to be fairly

universal among cortical cells. It is commonly observed that cells tend to re-
ceive nearly balanced amounts of excitatory and inhibitory current. However
the absolute values of these respective currents have not typically been attended
to, merely the net current. And while it is true that only net current affects a
cell’s probability of firing an action potential, whether the balanced currents are
large or small can have a significant modulatory effect on the cell’s excitability
(Shadlen and Newsome, , Troyer and Miller, ).
The interplay between these two seemingly unrelated cell- and synapse-level

properties may in fact offer a solution to the problem of the missing mechanism
for network learning—a solution that is introduced in chapter  and elaborated
upon in chapter . But before examining how the various pieces fit together into
a coherent learning scheme, it would be worthwhile to examine each in more
detail.

Prior Art

This research sits at the intersection between two bodies of research. On the
one side sits the / approach which is principally concerned with optimal
strategies for search within the problem space of synaptic strengths, with a dual
focus upon perfecting the performance of the network in its final task-adapted
form and upon minimizing the amount of time needed to reach that state. On
the other side is the experimental biology approach which instead takes a more
bottom-up approach, documenting the biophysical mechanisms which can actu-
ally be observed, with the hope of scaffolding up to explanations of progressively
more complex neural behaviors.
However, neither of these approaches has entirely delivered upon its promises.

The / field is typically less concerned with biological realism, and the dif-
ficulties of monitoring the behaviors and interactions of large numbers of cells
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places a limit on the phenomenological complexity that neuroscience can address
(for the moment). Thus, this work is an attempt to forge some connections be-
tween the formal, bloodless insights of machine learning, and the bulletproof,
yet myopic, discoveries of the experimentalists. As a result this work is firmly
synthetic, drawing a set of building blocks from both sides of this divide and at-
tempting to build something out of the most compatible elements of each. This
section is concerned with defining those blocks.

   

The real accomplishment of the / program was the development of for-
mal models for network dynamics and the discovery of algorithms that near-
optimally modify neural networks to change their function. But the generality
of this perspective leads to an agnosticism over how the target network behavior
is reached. Thus researchers divided the problem into two categories: one con-
sidering cases in which there is a precisely specified goal state, and another where
modifications are made as part of a more autonomous, undirected process.
The former describes models referred to as Supervised Learning, in which

there is a feedback loop of some sort, offering a network-behavioral readout
which can be used to guide changes to the synapses. This form of learning has
also received a disproportionate amount of attention in the field since it offers
practical uses as an optimization technique.Howevermaking such schemes work
typically involves the creation of an external ‘black box’ process which coordi-
nates this feedback pathway—often in strikingly non-biological ways.
The second form, in which functional changes in the network are not strate-

gically directed but are an emergent property of some modification process op-
erating without error feedback, is termed Unsupervised Learning. This natu-
rally appeals to the biologist who is pleased by the fact that the objectionable
black box may be removed altogether in favor of a more justifiable network prop-
erty. And in fact such systems do very well within a certain class of problems—
primarily involving self-organization or local signal processing. However, for
goal-directed behaviors such approaches are rarely effective.
We will examine variations on both types of learning in the sections that

follow, ultimately using the two in combination for the modulatory learning sys-
tem described in later chapters. But first it is important to examine the network
architecture in which either such scheme would function.

Simple Neural Networks · The Perceptron

One of the earliest attempts by computer scientists to build neurally-inspired
information processing systems was the feedforward network known as the Per-
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ceptron (Rosenblatt, ; Minsky and Papert, ). This type of network is
characterized by a simple architecture in which cells are grouped in layers with
each receiving signals from the prior layer and sending its own projections on to
the next. Neither descending nor lateral connectivity exists. As a result of this
complete absence of recurrence, analysis of the network’s behavior is actually a
tractable proposition. In addition, the network’s final ‘response’ to an input can
be reached in a single pass through the layers rather than needing to wait for it
to settle into an attractor state as one typically would with a recurrent network.
On the other hand, the simplicity of the system also raises obvious conflicts

in terms of its generalizability to biological neural networks. However even its
defining features—layered architecture and feedforward projections—are not
entirely unnatural. The brain also possesses a layered structure, and though there
are extensive recurrent connections, at least within sensory pathways it can be ar-
gued that the majority of processing occurs in a feedforward manner. So while
somewhat oversimplified, useful insights might still be drawn from them.
The most basic form of the network only has two layers (see figure .), the

lower of which having its firing rates set as a function of an input stimulus pat-
tern. As a result it is only the second layer which is driven by signals produced
within the network itself. Accordingly it is the single set of synapses from input
layer to output layer that is performing whatever remapping of the stimulus the
network is capable of producing. An important implication of this is that the
only types of problems that a simple, two-layer perceptron can solve are those in
which the mapping to be learned is linearly separable. An observation that leads
us to consider the types of problems these networks are capable of solving.

Simple Neural Networks · Tasks Performed

Due to the lack of either recurrence or non-stimulus-driven input, the output
pattern of a perceptron (represented by the firing rates of the cells in the output
layer) is guaranteed to be some direct transformation of the input signal. Thus
all network tasks boil down to one form of association or another. The simplest
of these, in cases in which there is an equal number of input- and output-layer
neurons is autoassociation: the reproduction of the input pattern in the output
layer cells. However, this is more a special case exhibiting signal propagation
rather than information processing per se, thus we will concentrate on two other
variations of the associative task.
The first is classification. Under this regime the responses of cells in the

output layer can be considered as essentially digital readouts. The network is
given an input pattern and its objective is to decide which of n arbitrary classes
it belongs to. This class membership is then communicated by causing the nth
output cell to have the highest firing rate within the layer. Since there is only one
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A ‘Simple’
Perceptron

A Multi-layer
Perceptron

input layer

output layer

input layer

output layer

‘hidden’ layer

Figure 1.1: The ‘perceptron’ artificial neural network. In these models all connections are unidirec-
tional with information flowing ‘up’ from the input layer to the output layer. In simple perceptrons
there is only a single set of synapses capable of modification. Multi-layer models add additional
cells, but, just as important, a second layer of synapses, allowing such models to solve more com-
plicated learning tasks.

stage of modifiable synapses in the simple perceptron case, the changes made for
the proper classification of one input necessarily interfere with the others, but
this interference occurs in a systematic way. In fact it is equivalent to selecting a
hyperplane through the m-dimensional space (given m input cells) in which all
input cases to one side of the plane are given one classification, and all on the
other side given a second classification (Amit, ; ăHertz, Krogh and Palmer,
). The rigidity of this distinction naturally limits the complexity of the judg-
ments such a network can make. However all is not lost since the addition of
one or more intermediate, or ‘hidden’, layers removes this restriction, allowing
the network to learn essentially arbitrary remappings—given proper training.
This addition also opens the door to themore interesting second class of pro-

cessing task. Whereas in the previous case output neurons were treated as glori-
fied  readouts on a control panel, an alternative exists in which their output
firing rates are read as an analog, rate-coded signal rather than the classification-
style population code. In this sort of task, the network reconfigures itself to cause
the firing rate of the relevant output cell to be a function of the value encoded by
the stimulus pattern.

..   · 

It has been argued that this type of operation—Function Approximation—
is a fundamental task performed by the brain (Poggio, ). If one subscribes
to a pure ‘grandmother cell’ model in which discrete representations of objects,
events, tasks, etc. are stored in dedicated cells or circuits, the result is a combi-
natorial explosion in which the number of cells required to store this informa-
tion rapidly outstrips the actual supply of cells and synapses in the brain. The
alternative proposed by Poggio is that rather than storing every possible varia-
tion on each piece of information, only one or a handful of canonical forms are
stored, then the brain uses some additional mechanism to interpolate between
them. In such a scenario performing function approximation efficiently becomes
of paramount importance. Thus even this simplistic task, operating in our highly
generalized network architecture can model operations important to biological
systems.
This mechanism is, at its essence, one of composition. This is apparent in

the previous example of mapping particular examples back to already-stored tem-
plates. However, in addition to creating generalizations it can also be used in the
opposite direction—generating a unique output from a combination of stored
instances. This scenario has been examined in the context of motor pattern pro-
duction (Salinas, ). Here, one imagines that the network has stored a reper-
toire of sub-movements composing a basis set fromwhich to buildmore complex
movements. Again, the mechanism is one of interpolating between stored states,
but to a rather different end. Thus function approximation allows for both classi-
fication—mapping an intermediate representation to the closest canonical copy
in storage—as well as diversification—creating entirely new motor movements
from a library of components.
Given the broad potential of this task we will return to it throughout this

work as a metric on our approach to learning.

Feedback Systems · Supervised Learning

A learning rule is essentially a decision process; it takes in information of some
sort, then, based on some transformation of that data, selects a course of action.
Thus any network learning algorithm has two common qualities:

. an input value which is a read-out of the current error on whatever task
the network is trying to perform, and

. an output which instructs the network to modify itself in some way in
order to minimize this error.

The variations in the learning rules we will discuss are either differences in these
inputs and outputs, or else in the transformation that maps one onto the other.
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If one’s goal is simply to make the network behave ‘correctly’ in a minimal
amount of time, without worrying about the specifics of how this is accom-
plished, it is hard to do better than systems using Supervised Learning. In this
approach, represented schematically in figure ., the circuit implementing the
learning rule is given a huge quantity of resources and, unsurprisingly, does a
very good job adapting the network to perform the desired function. This can
be seen in all three segments of the diagram. First, the circuit is essentially omni-
scient, receiving specific error feedback signals for each of the cells in the network
it is responsible for. This abundance of connectivity is mirrored on the right side
as well with independent modification signals being sent to the individual cells.
Directly following from this is the fact that the computations performed (and
degree of state which must be maintained) by the supervisor circuit itself are
daunting.

This is particularly problematic as the network size scales upward. While
it stands to reason that a relatively simple circuit could keep track of a hand-
ful of error values and send out a similar number of feedback signals, moving
into the range of realistic networks would require it to monitor numbers more
on the order of hundreds or thousands. Thus it is unsurprising that most tradi-
tional supervised learning implementations treat the circuit itself as a black box,
given how much easier it is to offload this computational work on an equation
rather than a network of neurons of its own. And in fact, to the extent that the
early chapters of this work represent a traditional approach to supervised learn-
ing, we too will abstract away the implementation of this Supervisor’s decision
process—thoughwewill return to the goal of providing a neural implementation
in chapter .

However, in these early chapters we again borrow techniques from the /
world. Since the initial approach was to merely verify that the ResponseMod-
ulation mechanism discussed below could provide a neural mechanism for trans-
mitting supervisory signals, we began by leaving the structure as similar to a
typical artificial neural network framework as possible, using  as a drop-in re-
placement for the least believable portion of the/ supervision scheme. Thus
we used a standard algorithm designed for making minimal changes to network
connectivity strengths in order to minimize error, but in our case adapted it to
optimize modulation states rather than synaptic weights.

This algorithm—the Widrow-Hoff or ‘delta’ rule—is an approach using
stochastic gradient descent to cause network weights to relax to a point that
minimizes task-dependent error. In order to do this, one must first define an er-
ror measure against which one can look for slight changes that could reduce the
error. In more formal terms, by examining the derivative on this error surface for
a given synaptic connection, then adjusting that connection strength proportion-

..   · 

supervised
learning

reinforcement
learning

random walk
learning

external
information

supervisor’s
strategy

training
signal

∑ £

Behavioral &
network state
information 

Non-specific 
error information

Non-specific 
error information

Synapse-specific
modification
instructions

Graded global
reward signal

Binary global
correction signal

Figure 1.2: Different approaches to network guidance. Three learning algorithms are depicted in
terms of the degree of external information the require, the complexity of processing involved in
the decision process, and the complexity of the output signal sent to the network being trained.
In the top row is supervised learning, a scheme which yields excellent results but has accordingly
high costs associated with it. It requires the ability to read out the state of the network at a very
low level, with access to all of the firing rates and synaptic strengths. In addition. In terms of pro-
cessing, it is presumed to have an idea of what the desired end state for the network is, and is
capable of comparing the current configuration to this target. In addition, the modification signal
it sends to the network is synapse specific, implying a staggering degree of micromanagement. A
simpler strategy, reinforcement learning, receives less information from the network and has no
direct access to the target state of the network, instead only getting an estimate of how well it is
performing, but not specifically why. Accordingly, its output to the network is general as well, pro-
viding a global reward signal which is interpreted differentially based on local conditions within
the network. Finally, random walk learning represents an additional simplification on reinforce-
ment learning. Rather than sending a modification signal communicating a degree of reward, this
approach instead sends a more binary, switch-type signal informing the network that the current
strategy is no longer working and that a new random variation ought to be tried.
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ally to that error derivative,

�wi j = −η
∂ E
∂wi j

, (.)

the system as a whole will gradually drift down the gradient to a point that is
guaranteed to represent at least a local error minimum.
This is a fairly manageable computation in the context of the Simple Per-

ceptrons discussed above given their single layer of synaptic connectivity. In this
case if a particular cell is firing too strongly it is clear that the source of the error
lies in the synapses between the errant cell and the input cells that project to it.
However, in more complicated networks with additional layers this approach
will clearly need to be amended—otherwise the only synaptic changes made
would be to the final layer of synapses, rendering this more complex network
functionally equivalent to the Simple Perceptron (since the additional layers that
were added remain unmodified and thus unused).
One way to adapt the delta rule to multi-layer perceptrons is the widely used

Backpropagation algorithm (Rumelhart & McClelland, ). To compensate
for the fact that a given output cell’s error may not lie with its own synapses
but those which drive another neuron upstream of itself, this algorithm earns
its name by propagating the final error back through the layers of the network.
Thus, on the positive side, blame for error is shared among all the cells that
contributed to it along the feedforward cascade. On the negative side, the infor-
mational and computational demands of this algorithm are even higher than for
the delta rule. Now the Supervisor needs:

. a way to read out the synaptic strength of every synapse in the network,

. a mechanism to specifically modify each of these synapses, and

. the computational power to perform the blame-assignment operation and
to decide on the proper modifications for this huge number of synapses

Any one of these objections represents a serious attack on backpropagation’s util-
ity as a realistic model of learning in biological networks—and we address them
in turn throughout the remainder of this work—but in the aggregate they are
devastating. On the other hand, backprop is amazingly efficient in practice, thus
it stands to reason that evolution might have stumbled upon a similarly optimal
approach whichmight share some of its strategic character, if not its implementa-
tion. It is for this reason that we begin by compensating for the second objection
(corresponding to the right column of figure .) with our ResponseModulation
regime, and only move onto the other problems later. Luckily, in addition to pro-
viding the problem—in the form of the unrealizable backprop algorithm—the
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/ literature also provides the tools to remedy the difficulties in the other
two columns of the schematic.

Feedback Systems · Reinforcement Learning

The first of these solutions for increasing the biological-ness of Supervised Learn-
ing comes by addressing the high information-content expectations of these learn-
ing rules. In order to account for this omniscience problem, an alternative scheme
has been proposed in the form of Reinforcement Learning in which the Supervi-
sor’s ability to specifically read out from and direct the network is greatly reduced
(Sutton and Barto, ). This in turn requires that more of the problem of learn-
ing be solved within the network itself rather than by the under-defined, black
box Supervisor. This change can be seen in both the left and right columns of
figure .: in terms of input, the supervisor no longer receives a cell-by-cell error
signal, but instead only a single error value representing how well the network
is performing in general over some limited period in the recent past. This has
the advantage of falling much more in line with the non-specificity of data that
candidate areas in the brain for this sort of function would be able to receive.

However, it also limits the precision of the modification instructions such
a Supervisor could offer to the network being trained. And in fact it may be
better to think of this form of supervisory circuit as less of a Teacher—as in
Supervised Learning—than a Critic. Rather than showing the network how to
perform properly, it instead merely weighs in on how good of a job it is doing
in its current state. All modification decisions are left up to some other mecha-
nism in the network itself. But this ‘drawback’ actually represents another win
for biological plausibility, for now the supervisor needn’t send independent mod-
ification signals to each cell (or, worse, each synapse), but can instead pass on a
global reward signal that is interpreted by all neurons based on their local condi-
tions.

In practice this means that some source of variation must be encapsulated
in the network itself. Previously we have relied upon directions from Teacher-
style Supervisors to decide on a direction in which to modify synaptic weights,
now that job falls back to the cells being modified. One could imagine a sophisti-
cated scheme for using local information in combination with the reward signal
to guide these modification, but in fact this is unnecessary, as we show in chap-
ters  and . Instead, a remarkably basic algorithm inspired by some of nature’s
simplest creatures can take the hints provided by the Critic’s reward signal and
translate them into synaptic modifications in a biologically plausible, and surpris-
ingly effective manner.
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Feedback Systems · RandomWalk Learning

This strategy, known as a guided random walk, represents one of the most com-
putationally cheap methods imaginable for moving down a gradient. And while
in this work, ‘gradient’ typically refers to an imaginary error gradient, in biolog-
ical systems, the gradient in question is wholly corporeal in nature. The most
vivid example of this sort of guidance can be seen in the foraging behavior of
bacteria (Koshland, ).
Since they lack vision systems, bacteria have no way of spotting a food source

from afar and setting a course toward it in order to feed. Instead, possessing
only chemical sensors detecting the concentration of the desirable chemical in
the current location, the bacterium must monitor changes in the concentration
in order to keep traveling up the gradient, and presumably to the food source
itself. Thus, the bacterium’s task is on the whole quite similar to that of the ideal
Critic-style supervisor: it has no external information about what a successful
‘solution’ would look like, but it can detect how well the current configuration
satisfies, and with the addition of some sort of integration mechanism would
be capable of determining whether the current direction was a positive one or a
counter-productive one.
It is precisely this sort of strategy that one sees in bacteria. The general al-

gorithm seems to be to swim in one direction while keeping track of relative
changes in concentration. So long as the concentration is increasing, no course
correction is necessary and the bacterium continues in this ‘successful’ direction.
However, unless the initial course was headed directly for the food source, it will
eventually overshoot and a decision will have to be made on a new direction to
swim in.
To make this decision intelligently requires either a fair amount of computa-

tional sophistication—which is clearly not available to the bacteria who success-
fully perform this task to survive—or else a clever ‘hack’ in terms of behavior
which can solve the problem while minimizing the amount of analysis required.
As one would expect, the bacterium chooses this latter option, but counterintu-
itively its response to the need to make a strategic decision on which direction to
turn in is instead to reverse its flagellum and go into a tumble, effectively selecting
a new course at random.
This is not quite as stupid as it seems. Recall that whenever a decrease in the

level of the target chemical is detected this tumble behavior is repeated. Thus
whenever one of these decision points is reached, the bacterium will likely make
a series of tumbles, the first few in ‘bad’ directions, each taking it a short dis-
tance further away from the food source before it is detected as a bad course
and corrected again. This continues until a ‘good’ direction is finally arrived at
randomly. In addition, because these course changes are random, the bacterium
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is unlikely to move a significant distance during one of these tumbling periods
since on average the random steps will counteract one another.
Thus, in its way, the bacteria compute the same derivative of the gradient

being optimized as the delta rule does. However while the delta rule requires
differentiation, the random walk merely samples points a short distance away
from the current position. As a result, the directions chosen are not guaranteed
to be optimal courses, but, given enough time, the organismwill eventually reach
its target.
This approach can be adapted to neural network learning quite easily, partic-

ularly in a reinforcement learning context. The bacterium is trying to optimize
its position relative to food—i.e., to find an ideal set of x, y, and z coordinates in
three dimensional space. The network is similarly trying to find optimal values,
albeit in a space of much higher dimensionality: the strengths of the synapses.
If we were to map the bacterial strategy onto this problem directly (as we do
in chapter ), the equivalent procedure would be to choose a ‘direction’ in the
space of synaptic weights and update the weight values by a small amount in
the direction of this vector at each ‘step’. Just as the bacteria would examine the
concentration after each of these steps before deciding whether to tumble, the
network would receive a reward signal from the Critic-style supervisor. In the
case that this reward was lower than the one received prior to this step, the net-
work would ‘tumble’ by choosing a new random vector in the weight space along
which to take its next ‘step’.
By borrowing this strategy used by extremely simple organisms to perform

highly complicated navigational tasks, we can address the objections that might
arise to algorithmic sophistication in the central column of the schematic in fig-
ure .. Whereas the switch to reinforcement learning and response modulation
reduced the unreasonable expectations on omniscient information availability
and independent targeting of each cell or synapse within the network, the inte-
gration of a guided random walk strategy for controlling network modification
removes the high-computational-power requirement that was keeping our Su-
pervisor in the realm of black boxes. It has now been sufficiently simplified for a
neural implementation to be buildable.
However there is a remaining problem with this scheme: it is unlikely that

an algorithm that is somewhat pokey when applied to the bacterium’s three-
dimensional optimization problem will be able to perform well enough to man-
age a - or ,-dimensional synaptic weight optimization. That is, unless
there is a way to reduce this dimensionality, it is unlikely that guided random
walk represents a tenable strategy for network learning. Luckily, it would appear
that the high-dimensionality of the weights space is actually something of an il-
lusion. As a result there are mathematical tools which can expose the simpler
underlying structure, reducing the problem to one on which even slow, simple
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random walk is fast enough to suffice.

Dimensional Reduction · Principal Component Analysis

High dimensionality is a problem inherent to neural networks, and is a difficult
one to overcome even when not exacerbated by a simplistic guidance scheme
such as random walk. This is particularly the case since what one would like to
find are scalable learning rules that could function in both small circuits as well
as larger network meshes. However, each additional neuron in the net adds at
best one dimension to the problem (in the case of neuron-based supervision),
and at worst N−1 dimensions if the network has all to all connections (in the
case of synapse-based supervision).
It is difficult to imagine the brain dealing with this combinatorial explosion

through a brute force approach of adding new neurites connecting to each of
these locations and increasing the complexity of the control circuitry to hold
these thousands of state variables in a single store as it micromanages each and
every change. The alternative would be to allow the lower levels of the network
to structure themselves in such a way as to allow more general guidance from su-
pervisory circuits to affect them differentially while at the same time simplifying
the task for the Supervisor.
Luckily the structure of known neural networks supports this latter approach,

particularly in the sorts of sampling array-driven networks like those used for
function approximation in this study. The relevant featuremaking them amenable
to this sort of dimensional reduction is the lack of true independence in the re-
sponses of individual cells. In part this derives from overlap in the receptive fields
of cells in the sensory sampling array (examined in more detail in chapter ).
But regardless of the cause, when cell activities are correlated, it is a waste of re-
sources to devote neural resources to tracking them individually. Instead, there
should be a way of supervising them in groups, modulating neighboring cells
(whose responses will also be similar) in similar ways.
The trickier proposition is coming up with a way to detect these correlations

and devise an innervation scheme that will take advantage of it. The standard
tool in appliedmath for condensing a number of correlated elements into a lower
number of dimensions while sacrificing as little information as possible is called
Principal Component Analysis or  ( Jollifee, ). The essence of the tech-
nique is the examination of the statistics of all the points in a high-dimensional
cloud of data, then, by finding the eigenvectors of the correlation matrix, rank-
ing them in terms of the amount of variance in the cloud they account for. Once
this is done, many of the lower-valued eigenvectors can be discarded and the
data can be represented in terms of this new set of orthogonal axes in the lower-
dimensioned subspace they define.
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This would be an ideal solution formany neural network learning tasks since
it allows even a relatively simplistic search algorithm to function due to the de-
gree of preprocessing. By shrinking the size of the haystack, finding the needle
becomes achievable—even while blindfolded. In our case,  can be used in
combination with a random walk-inspired guidance scheme since it allows for
the hundreds or thousands of synaptic weight dimensions to be reduced to a
handful, at which point even the slow, irregular drift of this simple algorithm
would reach the target point in a reasonable amount of time.
The only problem with this magical solution is that the mathematical pro-

cessing required to perform is is formidable, requiring a significant amount of
linear algebraic manipulation well in excess of what could be easily computed
by a single neuron. However this is only true if the solution to the problem is
dealt with serially. Luckily it has been demonstrated that through slight modifi-
cations to standard Hebbian plasticity rules, this very computation takes place
(Oja, ; Sanger, ). However, rather than the results coming in the form
of a set of firing rates they are stored in the set of synaptic strengths connecting
to a target neuron. Once this is accomplished, the only remaining complication
is extracting these principal component profiles stored in the weights and using
them to assemble a feedback pathway which targets cells in the network accord-
ing to the patterns they dictate. In chapter  we explore a new technique which
appears to do just this.

Despite the lack of a cohesive, biologically plausible learning model having been
put forth by the/ community, this review should illustrate that all the pieces
are present and that it is merely a matter of connecting them in a proper fashion.
However, while the / tools have brought us quite close to the goal of a be-
lievable learning mechanism, there are two remaining issues that they cannot
address and for which we must turn to biological data:

. There is no known mechanism that could perform the direct synaptic
modification demanded by backpropagation and similar algorithms on a
sufficiently wide scale.

. The degree of synapse-level micromanagement foisted upon the high-level
supervisory circuitry in these schemes seems biologically unlikely.

The latter issue can be addressed through the random walk guidance (coupled
with -based preprocessing) hinted at in the prior section, but just as impor-
tant is an explanation of how these systematic, error-driven modification signals
can be transmitted to the network and put into place synaptically.
To examine what biological mechanisms one would need to use in order

to implement these/ strategies in a realistic way—and to try to address the



 ·  

two issues raised above—let us now survey the relevant experimental data. In the
end, none of the general strategies have any value in a biological context unless
they operate similarly when constrained by the realities of real neural networks,
and not just artificial ones.

   

While the/ research discussed above provides a compelling—albeit hypothetical—
picture of the higher level structure and learning strategies of a neural informa-
tion processing system, it is decidedly lacking in explanations that reach the bio-
physical level of individual neurons and synapses. However, this is the level at
which experimental neuroscience has had some of its greatest successes in exam-
ining questions of learning and adaptation.

Synaptic ‘Learning’

The brain is a highly varied system with myriad exotic schemes for governing
the strengthening and weakening of synapses. However at the phenomenologi-
cal level—at least among cortical cells—much of the activity-dependent modifi-
cation occurring can be described in terms of a process laid out by Donald Hebb
over  years ago (Hebb, ). His hypothesis conservatively proposed that
plasticity was necessarily a local computation, with all the information needed to
decide on a change in synaptic strength being available directly at that synapse.
While hardly a controversial claim, it does create problems of complicated wiring
(or worse) for algorithms such as backpropagation.
In its initial form, the archetypal Hebbian Synapse’s strength changed to

reflect the degree of coincident activity occurring between the presynaptic and
postsynaptic cells, with the idea that this correlated activity was evidence of a
functional similarity between those two cells that ought to be more permanently
stored in the coupling strength between them. The exact mechanism of this
change was left undefined, but implicit in the idea is that there would be some
form of coincidence detection operating on one or both ends of the synapse, and
that the arrival of correlated activity would initiate a synaptic strengthening pro-
cess.
In more recent years the details of this detection and modification mecha-

nism have been further fleshed out, with intracellular calcium, backpropagating
action potentials, and  receptors offering a particularly nice example of co-
incidence detection. This research is encouraging in that it offers a biologically
reasonable defense for the use of Hebbian modification on the more abstract
level at which we will employ it.
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Reward & Supervision

A common objection by biologists to the scheme of supervised learning dis-
cussed in the previous section is that it is merely pushing the problem of learning
off to an all-knowingHomunculous whomakes all the decisions guiding the pro-
cess. Given that the eradication of this figure virtually defines the mission of the
cognitive neurosciences, it is unsurprising that these ideas encounter resistance.
Yet there is ample evidence of supervisory input in a number of circuits

within the brain, so the idea of top-down control will have to be merely amended
rather than discarded altogether. However, in practice the form of this top-down
supervision falls much more in the mold of the reinforcement learning-style
Critic rather than the Teacher of supervised learning. Examples of this can be
seen in the vertebrate dopaminergic system in which neurons of the substantia
nigra project to the striatum, where they are thought to encode a general reward
signal (Montague et al., ; Schultz, ). In insects, a dopamine precursor,
octopamine, serves a similar function, sending a feedback signal to the mush-
room bodies (Menzel, ).
A common feature of these experimentally observed supervisory pathways

is that the signal they deliver is essentially global, and does not individually affect
the synapses of the network onto which the projections terminate. This consti-
tutes a near-fatal challenge to the backpropagation hypothesis since it expects
the high-level supervisor to tailor its reward/error signal to each synapse in the
subordinate network.
In addition backprop requires amechanism that is clearly not present here by

which the supervisory network can strengthen and weaken synapses directly and
independently of one another. For this sort of arrangement, one would expect to
see a peculiar type of three-element synapse in which the axon of the supervisory
cell terminates directly onto synapse being trained. This sort of arrangement has
been observed in vertebrate and other nervous systems, however such cases are
occur too rarely to explain learning.
In sum, the general characteristics of observed supervisory circuits suggest

two constraints upon models that could be considered biologically plausible.
First, a reinforcement learning-style approach should characterize the feedback
pathway in that the supervisory signal ought to be a general one, not making
fine distinctions between its targets within the network being trained. This is
consistent with the global quality of dopamine signaling, and is intuitively ap-
pealing since it does not demand that the supervisor be both high-level enough
to read out task dependent error at the behavioral level and low-level enough
to micromanage each synapse within the network responsible for eliciting that
behavior.
The second constraint these data put on any effort at modeling these pro-
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cesses is that the actual synapticmodificationmechanismmust be a locally-driven
one, since there is no evidence of top-down control of synaptic strength. Thus
the supervisor must be causing dynamic changes to the network that ultimately
result in synaptic restructuring rather than plasticity being a single-step process
imposed from above.

Dynamic Response Modulation

While a locally-interpreted dopamine signal is one candidate mechanism for
communication between supervisory areas and subsidiary networks, the steps
leading from dopamine transduction to a change in neural behavior are less
well defined. Thus, while there is evidence that it is in fact being used as an
error/reward signal, the more interesting question of how that signal is ‘obeyed’
in order to improve performance is left unaddressed. However, there is a recently
discovered mechanism which may fill this gap, providing both a biologically rea-
sonable feedback pathway and a more transparent mapping from command to
action.
This mechanism, referred to in these pages as response modulation takes ad-

vantage of the widely observed phenomenon of balanced synaptic inputs, whereby
cells typically receive nearly identical quantities of fast excitatory and inhibitory
current. Since these currents are balanced, the net current input is zero and the
cell’s membrane voltage neither de- nor hyperpolarizes. Thus, at first blush, one
would suspect that so long as this balance is conserved, the overall size of the
positive and negative currents will have no bearing on the postsynaptic neuron’s
probability of firing an action potential. But, in fact, just such a relationship ex-
ists.
The explanation for this counterintuitive result is that while the net amount

of current remains unchanged so long as the excitatory and inhibitory inputs are
balanced, the total number of synaptic events does change. As a result, even if
every glutamate binding event is paired with a hyperpolarizing,  binding,
the raw number of these events will increase as the magnitude of the balanced
currents increases. Most of the time this is an invisible change, since it is not
directly reflected in the cell’s steady state membrane potential.
Where it does have an effect though is in the fine structure of the voltage

trace. Every synaptic current gives this potential an imperceptibly small kick in
one direction or the other. The more of these events that occur during a period
of time, the more jagged the subthreshold voltage trace will be. Thus, as one in-
creases the balanced currents, the average postsynaptic voltage will remain con-
stant, however the amount of variance around that mean value will increase as a
function of this resulting ‘synaptic noise’.
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Again, this would seem to be of negligible importance in influencing cell be-
havior since we’ve already established that balanced currents will not drive the
cell to spike. However, this phenomenon can have a profound effect in shaping
the cell’s response to other synaptic inputs. Thus it could represent an impor-
tant modulatory pathway, affecting a neuron’s intrinsic excitability. And, in fact,
recent work (Doiron et al, ; Chance et al, ; Prescott & De Koninck,
; Mitchell & Silver, ) has demonstrated that this is the case. But it is
particularly noticeable under two regimes.
The more important of these is the condition in which the cell’s membrane

potential is very near to—but just below—its firing threshold. In this case, an
increase in the variance of its voltage trace due to synaptic noise has the potential
to momentarily knock the voltage above threshold, resulting in an action poten-
tial even in the absence of what would otherwise be ‘sufficient’ excitatory input
to elicit a spike.
As represented pictorially in figure ., this noise-driven modulation has the

effect of lowering the initial firing threshold of the cell and generally smearing
the input/output curve to the left, decreasing its slope in the process. And it is
the slope change in this second, midrange regime that marks this form of mod-
ulation (which actually influences the gain of the / mapping) as functionally
distinct from what could be achieved through a simple excitatory bias current.
In the bias case the added excitation would also cause the cell to fire in response
to smaller than normal amounts of synaptic current, however the slope of the
/ function would remain unchanged. Instead, this type of modulatory input
would merely shift the entire curve to the left; its shape otherwise unchanged.
Thus there are in fact two types of modulation that can be achieved merely

through changes in ordinary, ionotropic conductances. One, achievable by send-
ing either an excess of excitation or inhibition resulting in a shifting of the /
curve to the left or the right, corresponds to a parallel change in the firing thresh-
old and saturation point. The second results from keeping excitation and in-
hibition balanced, but scaling them in tandem. Thus by boosting the absolute
magnitude of both currents, the gain of the / function can be be modulated,
dropping the firing threshold, flattening the linear phase, and slightly raising the
saturation point. In addition, since current magnitude and balance are orthogo-
nal to one another, both types of modulation could be used simultaneously.

Synthesis

Thus far we have focussed on sketching out the various components of the prob-
lem, but have shied away from laying out the connections between them that
could add up to a believable supervision scheme for realistic neural networks.
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Figure 1.3: Noise-based modulation of neural excitability. Model neurons typically respond to in-
put current in a sigmoidal fashion, with a subthreshold region, in which they don’t fire, a linear
region, in which increases in current cause increases in firing rate, and a saturation point, beyond
which the firing rate will no longer increase, regardless of the input current. The modulation we
will discuss in subsequent chapters comes in two forms. The first, depicted in the left panel corre-
sponds to the addition of a bias current. In this case, a constant excitatory input has been added,
having the effect of shifting the entire curve to the left, lowering the amount of additional current
required to reach threshold, but leaving the slope unchanged. The second type of modulation,
seen in the right panel, is the result of adding balanced excitatory and inhibitory currents. This
type of modulation also lowers the threshold of the cell, but more importantly affects the slope
of the linear region, allowing the response function to be smeared out or sharpened as necessary.

However, all the elements for such a synthesis are present, and the remainder of
this thesis will explore how the pieces fit together.
We begin our examination of the use of gain and shift modulation as a mech-

anism for guiding learning by simply dropping it into a highly artificial, /-
style learning environment. At the outset the goal is merely to show that, when
used in an optimal manner, this biologically realistic modulatory mechanism
could change a network’s behavior in such a way as to better perform a task. This
is demonstrated in chapter  in which we use standard optimization techniques
to arrive at a mixture of modulatory inputs that, if provided by a hypothetical
supervisor circuit, would minimize the network’s error in an externally-imposed
function approximation task.
However even the success of this leaves a pair of open questions. First, there

is the problem that network behavior based on this sort of modulatory drive is
entirely the result of decisions made by the supervisor. Thus we have put aside
for the moment the more difficult question of learning itself by solving it in an
algorithmic black box rather than in a biologically believable manner.
The second issue derives directly from this overreliance on the supervisor.

Since the learned ‘behavior’ is dependent upon the modulatory inputs, remov-
ing our artificial supervisor’s influence would render the network incapable of
performing the task. Since it seems unlikely that high-level supervisory circuits
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are involved every time a learned behavior must be performed, it would be prefer-
able to be able to somehow make this learning intrinsic to the network itself.
In chapter  we attempt to address this transfer of learning issue. Though

we are again using an unrealistic, optimizing supervisor, we demonstrate that
through the addition of a local, Hebbian rule governing plasticity within the net-
work, the pattern of externally imposed activity can gradually be transferred to
the synapses. Thus, over time, the behavior becomes locally produced, allowing
the supervisory modulation to relax, thereby freeing the supervisor to attend to
other modifications in that (or another) network.
Finally, in chapter , we address the issue of the unrealistic supervisor itself.

As used in the earlier investigations, it has the dual drawbacks of having essen-
tially omniscient access to network activity state, as well as micromanaging the
modulatory input sent to the network on a cell-by-cell basis. Since this places bio-
logically unrealistic expectations in terms of processing power and available infor-
mation on the supervisor, we instead explore a reinforcement learning-inspired
scheme whereby the supervisor only has a general idea of the network’s success
and cannot locally assign blame. In the place of the implausibly sophisticated gra-
dient descent algorithm for fine tuning neuronal modulation, we instead turn to
an easily realizable random walk strategy for exploring the modulation space.
Though thesemodifications to the supervisor increase its neural believability,

they naturally decrease its efficiency, primarily due to the high dimensionality of
the search space and the simplicity of the search algorithm. However we also
demonstrate that these failings can be mitigated through simple changes to the
plasticity rules governing connections between the network and the supervisor.
By making use of a modified form of Hebbian learning, the innervation pattern
from the supervisor to the network changes to reflect the principal components
of the correlations within the network. As a result, the supervisor is able to deal
with the handful of most task-relevant dimensions in its random walk rather
than being directly dependent upon the number of cells in the network.
In summary, we propose a biophysically plausible mechanism by which a

neurally-derived supervisor could influence a subsidiary network in order to
perform a task. In addition we demonstrate that through the addition of non-
controversial, local plasticity rules, this learning can be made permanent.



 

Controlling Network Activity via
Response Modulation

Introduction

Neural networks that perform a specific task must be developed through a learn-
ing procedure which reconfigures the network in a way that maps patterns of
input to a desired output. A standard mechanism for inducing such a correct
mapping is the use of supervision. The supervisor can be thought of as a neural
circuit that monitors the network’s success in performing its task, and, by adjust-
ing the properties of the network, acts to minimize the difference between the
desired and actual output.
Traditionally, the supervisor receives an error signal and adjusts the network

by directly guiding synaptic plasticity. This approach has proven widely suc-
cessful in training networks to perform a variety of tasks (Widrow & Stearns,
; Chauvin & Rumelhart, ; Hertz et al., ; Dayan & Abbott, ).
However, there is little anatomical evidence that such a scheme could work un-
der a biological implementation. In particular, this direct synaptic modification
model presumes the existence of a large number of backprojections from the su-
pervisor terminating on the synapses in the network. While massive feedback
projections are characteristic of biological nervous systems, the proposed three-
element synapses—though they do exists—are too rare for this mechanism to
explain network learning on this scale.
Instead, we propose a supervision scheme in which adjustments are made

not to synapses, but to the neurons themselves. This connectivity pattern would
be consistent with known neuroanatomy, consisting of feedback connections
from the supervisor to the neurons within the network. Additionally, these con-
nections could be ordinary excitatory and inhibitory inputs (Chance et al., ),
allowing for both the speed and input specificity necessary for rapid learning.
The question we address here is whether such a scheme can work. We first

survey the range of network functions that can be learned based on this type of
supervision. Subsequently, we examine the effects of the supervisor’s modulatory



 ·   

input, and discuss the problem of learning in the context of the search space
within which the supervisor operates.

Methods

We apply our proposed supervision scheme to the problem of function approx-
imation, a classical neural network task with similarities to those performed by
biological circuits (Poggio, ). The objective is to elicit a network output
that is a specified function of a single stimulus variable, θ . A traditional super-
vision scheme would bring this about by modifying synaptic weights according
to a synaptic learning scheme such as the delta rule (Widrow & Hoff, ),
in which errors in the output approximation are used to strengthen or weaken
connections based on their relative contributions to those errors. Here, a simi-
lar approach is used, but rather than adjusting synaptic weights, the supervisor
modulates the response properties of individual network neurons.
Ourmodel network consists of a two-layer feedforward architecture contain-

ing purely excitatory connections, with N input neurons projecting to a single
output neuron (see figure .). The input units are driven by currents that are
Gaussian functions of the difference between a stimulus, θ , and a preferred stim-
ulus θi . Preferred stimulus values are uniformly distributed across the stimulus
space for the different input units.

Output Layer

Input Layer

supervisor

Stimulus  

Figure 2.1: Network architecture. 460 input neurons receiving stimulus-tuned input currents
project to a single output unit. An external supervisor is connected to all input units and mod-
ulates their response properties independently.

Each input unit’s firing rate is calculated by passing its stimulus-tuned input
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current through a sigmoidal transfer function,

ri (θ) =
1

1 + exp (−gi (Ii (θ) − si ))
. (.)

The parameter si , which we call the shift, controls the value of Ii at which ri
reaches half its maximal value. The parameter gi , which we call the gain, deter-
mines the slope of the firing rate versus input curve at this point. These are set
to the initial values si = 1.0 and gi = 3.0 for all units, but are then changed by
the supervisor.
The network’s output consists of the firing rate of the single unit in the top

layer of figure .. This rate is also determined by the sigmoidal function in equa-
tion ., but the input factor is instead a sum of the firing rates of the input layer
units,

R(θ) =
1

1 + exp
(

−gout

( N∑
i=1

ri (θ) − sout

)) . (.)

The goal of learning for this network is to match the output firing rate, R(θ),
to an arbitrary set of stimulus-dependent target functions, F(θ), as closely as
possible.

  

Instead of following the classical approach and having supervision occur through
changes in the synaptic weights, our form of supervision involves changes in the
shift and gain parameters (si and gi ) to each of the individual input cells, thereby
controlling their response properties. By contrast, all weights are kept fixed at
1.0 throughout the simulation.
Performance error is calculated by comparing the output firing rate to the

target function for each stimulus value. The supervisor then uses a stochastic
gradient descent algorithm to modify the shifts and gains of the input units in
order to reduce the error,

E(θ) =
1
2

(R(θ) − F(θ))2 . (.)

For each stimulus presentation, a random θ value is chosen in the range from 0
to 2π . The rates of the input and output cells are then computed and shifts and
gains for the input cells are modified such that

si → si − ε
∂ E(θ)

∂si
and gi → gi − ε

∂ E(θ)

∂gi
, (.)
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where ε is a small rate factor which constrains the response modulation. In our
simulations, ε was fixed at 0.2.

Results

  

We begin our analysis by showing that function approximation can be achieved
in the absence of synaptic plasticity solely through changes to the input cells’
response properties. Using our supervision regime, the network can approximate
a wide variety of target functions, as depicted in figure .. Distribution of shift
and gain values for the modulated cells are plotted in the left column, and the
corresponding target function and network approximation in the right column.
In the center are the modulated firing rates of the input layer cells with respect
to the stimulus.
In general, the network can approximate any smooth, continuous target func-

tion it is given. However, since the modulated firing rates of the input layer cells
represent a basis set for the output approximation, problems arise when these
response profiles cannot capture important features of the target function. This
limitation can be seen in figure .c where rapid changes in the target function
cannot be reproduced by the network due to the Gaussian shape of the input
unit response tunings. It is worth noting that in its attempts to deal with the
discontinuity, the supervisor has increased the gain of the cells whose response
boundaries border the vertical portion of the target function in an attempt to
match that contour.

 . 

Following the observation that gain modulation was used to mitigate the approx-
imation failure in the case of the square-wave target function, we examined the
relative uses of shift and gain in the learning process. Figure . illustrates the re-
sult of learning by modulating shift alone, gain alone, or both in tandem. Figure
.a considers a low-frequency cosine target function, while figure .b considers
a high-frequency target.
In the low-frequency case, learning succeeds regardless of which parameters

the supervisor was free to modulate. The top row shows the optimal case in
which the supervisor relies approximately evenly on shift and gain, with shift
contributing to the overall level of activity, and gain controlling the flatness of
the response in the peak and trough and its steepness along the sloped portions.
This reliance upon shift for setting the overall vertical level can be seen indirectly
in the second row of figure .a, corresponding to the gain-alone case. Here the
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Figure 2.2: Examples of learning via response modulation for a variety of target functions. Plots
in the left column depict the modulation state of the network, with each dot corresponding to
the final shift and gain values for each input unit. The center column shows the responses of
a sampling of input units to a range of stimulus values. The right column plots the network’s
approximation (dots) of the target function (line) for a selection of stimuli.

shifts remain fixed, but a similar effect can be emulated by flattening the gain
profiles of a few inputs which will in turn contribute a stimulus-independent
baseline shift.
In comparing the target approximation in the right column of figure .a, the

results from learning with gain alone are virtually unchanged as compared to the
shift-alone and shift-plus-gain conditions. However, in the high-frequency case
of figure .b the differences between shift and gain become stark.
Again the top column of figure .b shows that the function is readilymatched

by the supervisor when both shift and gain are adjusted. But whereas in the low-
frequency case, learning was successful with only shift modulation, here it fails
miserably. This failure is due to the breadth of the Gaussian inputs being wider
than the half-period of the target function. Thus in order to properly approxi-
mate the height of the peaks, inputs must be shifted up, but in the process this



 ·   

654
Gain

.8

1

.6

Sh
ift

0 π 2π

1

.5Ra
te

0 π

1

.5Ra
te

2π

1890
Gain

2

1Sh
ift

0 π 2π

1

.5Ra
te

0 π

1

.5Ra
te

2π

5.254.8
.8

.9

1

1.1

Gain

Sh
ift

0 π 2π

1

.5Ra
te

0 π

1

.5Ra
te

2π

Low Frequency Target

Shift
alone

Gain
alone

Shift
+

gain

a

0 π0543 π 2π
Gain

141062
Gain

1284
Gain

0

3

1.5

Sh
ift

0

2

1Sh
ift

.5

2

1

1.5

Sh
ift

1

.5Ra
te

1

.5Ra
te

0 π 2π

1

.5Ra
te

0 π 2π

1

.5Ra
te

2π

0 π

1

.5Ra
te

2π

0 π

1

.5Ra
te

2π

Shift
alone

Gain
alone

Shift
+

gain

High Frequency Targetb

Figure 2.3: Relative contributions to learning of shift- and gain-based modulation under two stim-
ulus regimes. As with figure 2.2, the columns depict (from left to right), the network modulation
state, modulated firing rates of input cells, and the network’s final approximation of the target
function.
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causes the depth of the troughs to be overestimated as the Gaussian tails spill
off to the sides. As a result, the ultimate approximation splits the difference be-
tween peaks and troughs by lying along the target function’s mean value, with
only small deflections toward the extremes.
It is clear that to successfully approximate this function, the breadth of the

response profiles must be narrowed, and this is precisely the result achieved by
learning in the gain-alone condition (middle row of figure .b). In this case the
network learns successfully even in the absence of shift modulation by boosting
the gain of inputs with preferred stimuli near the peaks, andmodestly decreasing
those preferring the troughs.



Learning is made easier in these networks by the fact that the set of shift and
gain variables that leads to successful function approximation is not, in general,
unique. An illustration that this is indeed the case can be seen in figure ., in
which the final network modulation states of two separate runs are plotted. In
both cases the target function was the same, however in the first run the input
cells were given initial values of si = 0.91 and gi = 5.0, and in the second run
si = 1.14 and gi = 8.4. In both cases the supervisor was able to approximate
the target perfectly, yet none of the modulation states in the two runs is the
same. This suggests that the problem, from the supervisor’s perspective, may be
simpler than one would guess. Perhaps it is the overall balance of shifts and gains
that is significant, and not simply finding a single, globally optimal solution.



It is important to remember that the supervisor’s control of the network corre-
sponds to a pattern of excitatory and inhibitory input that it sends to the net-
work. As a result, the same network could conceivably be switched (Lukashin
et al., ) between different target functions simply by the supervisor chang-
ing this input pattern. This raises the possibility of the supervisor building up a
repertoire of learned states over the course of learning, and then applying those
as appropriate to the task at hand. It would be particularly useful if there were
some consistent mapping between related modulation states and related target
functions.
In fact this relationship seems to exist. Figure . shows the result of interpo-

lating between learned states to yield an intermediate output. Figures .a and
.b show the result of learning two sinusoids phase shifted by π/2. For figure
.c, no learning occurred. Instead, a set of shifts and gains was constructed by
taking the vector average of the sets in the previous, learned trials. The resulting
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Figure 2.4: Function approximation solutions are not unique. The two clouds depict the final shift
and gain states of the input units after learning from two different starting conditions. The cloud
on the left corresponds to a starting position of (a), and the cloud on the right to starting position
of (b). The target function in both cases was identical.

distribution produces an output quite close to the midpoint (in phase) between
the learned functions.
This suggests an additional simplification of the supervisor’s task since every

new target function need not be learned from scratch. Instead, by consulting a
library of previously learned approximations, the supervisor can start with a sim-
ilar pattern and fine-tune the approximation from there. This result also places a
limit on what could otherwise be unsustainable growth in the size of the library
over time. Since similar functions yield similar network modulation patterns, it
is not necessary to exhaustively store every single pattern experienced. Instead, a
pared-down set of characteristic functions can be maintained, each as a basis for
an entire group of targets rather than just a single one.

Conclusions

Though we have demonstrated that through its modulatory input the supervisor
can put the network into an activity state suitable for the task, it should be noted
that this does not result in a permanent change to the network itself. In the
absence of modulation the network’s response to stimuli will be identical to its
response before ‘learning’ took place. For permanent changes that do not depend
on the action of the supervisor, a form of synaptic plasticity is necessary.
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Figure 2.5: Interpolating between learned modulation states yields an interpolated output func-
tion. After learning to approximate two sinusoids shifted in phase (a and b), the resulting mod-
ulation states were averaged (c, left panel), resulting in an output function corresponding to a
sinusoid with an intermediate phase (c, right panel).

In the next chapter we examine similar networks in which an unsupervised,
Hebbian learning rule governing plasticity works in concert with supervised re-
sponse modulation. This results in a pattern of learning similar to that discussed
here, with the exception that learning is gradually transferred from the modula-
tion pattern to the synaptic weights. Once this transfer is complete, the super-
visory modulation may be removed altogether without affecting the network’s
performance.



 

Guiding Hebbian Learning with
Response Modulation

Introduction

Correlation-based, Hebbian mechanisms of synaptic plasticity have been used
with considerable success to explain the spontaneous development of selectiv-
ity and sensory maps in neural circuits (see Miller, ). However, when such
plasticity mechanisms are applied to the development of networks that perform
specific functions, rather than simply represent input data, a problem arises. To
guide correlation-based synaptic plasticity, the activity of a ‘naïve’ neural circuit
must be correlated in a manner similar to that of the final, functioning circuit.
But such correlations usually arise only after the synapses of the circuit have
been appropriately adjusted. The consequence of this is a chicken-and-egg prob-
lem: which comes first, correlations or synaptic modifications?
The traditional answer to this question is that synaptic modifications come

first, guided by a supervisor. The supervisor is a hypothetical neural circuit that
assesses network performance, computes an error signal, and uses it to direct
synaptic plasticity within the network. Such schemes work extremely well for
many tasks (Widrow and Stern, ; Chauvin and Rumelhart, ; Hertz et
al., ; Dayan and Abbott, ) making them attractive models for learning in
biological systems. However, for biological applications, it is important to iden-
tify the pathways through which the supervisory circuit controls synaptic plastic-
ity. In some cases, such as climbing fiber input to cerebellar Purkinje cells, such
a mechanism appears to be in place. In other systems, such as cerebral cortex,
an appeal must be made to some form of modulatory (perhaps dopaminergic,
see Schultz et al., ) control of synaptic plasticity that is largely conjectural.
Furthermore, modulatory pathways tend to be slow and nonlocal, making them
poorly suited for the rapid, precise control of synaptic plasticity needed during
task learning. These considerations lead us to explore the possibility that super-
vision of synaptic plasticity takes place indirectly rather than directly.
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The scheme we study corresponds to correlations coming first. In other
words, the supervisor modulates neuronal excitability in order to introduce cor-
relations into network activity. These correlations then generate the synaptic
plasticity needed to learn a task through Hebbian synaptic modifications that
are not themselves subject to direct supervision.We are interested in supervision
through response modulation because it is easy to see how this scheme could be
realized in cortical circuitry. The response modulations that we consider can be
generated through standard excitatory and inhibitory synaptic input. Therefore,
in this scheme, the supervisory circuit can guide learning through the feedback
projection pathways that are characteristic of cortical circuitry, and no appeal
must be made to as-yet-undiscovered forms of modulation. It is important to
realize that we are not proposing this scheme as an algorithmic improvement.
Indeed, such indirect supervision of synaptic plasticity has disadvantages, and
an important element of our study is to determine how detrimental these are.
In summary, we consider a network in which synaptic plasticity is purely

Hebbian, a form typically used in unsupervised learning applications. We ask
whether it is possible to implement supervised learning in such a network solely
by communicating error signals to the network along conventional excitatory
and inhibitory feedback pathways that modulate neuronal responsiveness but do
not directly affect synaptic plasticity. Such a scheme is not optimal, so its virtues
are not efficiency or elegance. Rather, we take this minimalist approach so that
we can determine whether these well-established elements of cortical circuitry
provide a sufficient basis for implementing supervised learning.

Response Modulation and Synaptic Plasticity

Neural networks used for supervised learning consist of units with nonlinear
response functions connected together through interactions characterized by
synaptic weights. The response ri of network unit i to an input Ii is typically
determined by a sigmoidal function,

ri =
1

1 + exp (−gi (Ii − si ))
. (.)

In biophysical terms, this can be thought of as the normalized firing rate gener-
ated by an input current Ii . The parameter si , which we call the shift, controls
the value of Ii at which ri reaches ½ its maximal value, while gi , which we call
the gain, determines the slope of the firing rate versus input curve at this point.
Input currents are typically computed by multiplying presynaptic responses by
synaptic weight factors and summing over all inputs.

..      · 

The role of the supervisor is to compute an error by comparing actual and de-
sired network output, and to use this error to direct the modification of network
parameters such that network performance improves. Conventionally, the ma-
jor targets of this process are the synaptic weights. For example, weights can be
modified to produce a stochastic gradient descent of the error function.We devi-
ate from this procedure by employing a standardHebbian synaptic modification
rule that is not directly affected by the supervisor. At each stimulus presentation,
the synaptic weight connecting unit i with response ri to unit a with response
Ra , wai , is augmented by a term proportional to the product of the pre- and
postsynaptic activities,

wai → wai + εw Rari , (.)

where the parameter εw controls the learning rate. In addition, to prevent the
runaway excitation that results from this positive-feedback rule, divisive normal-
ization is included. This consisted of dividing all the weights by factors that
maintain the sums (for all a)

N∑
i=0

wai = α (.)

at a constant value α. The important point here is that neither of the above rules,
. or ., involves the error function or any other form of supervisory signal.
All the supervision in our network takes place at the level of the gain and

shift parameters governing the input-output function of equation .. It is not
unusual for supervised learning schemes to modify such parameters, particularly
shift parameters. Furthermore, in our scheme, supervision of shift and gain pa-
rameters takes place through the same type of stochastic gradient decent proce-
dure used in conventional supervised learning algorithms. The novel element in
our approach is that these parameters are the only targets of supervised modifica-
tion. The reason that we restrict supervision to the shift and gain parameters of
neuronal response functions is that, unlike the supervision of synaptic plasticity,
such supervision can be accomplished by ordinary, fast excitatory and inhibitory
synapses from neurons of the supervisory circuit onto neurons of the function-
approximation network. Changes in the shift variable si correspond to having
the supervisor provide either net excitatory or net inhibitory input to network
neuron i . It has been shown that balanced, parallel modulations of excitatory
and inhibitory input can modify the gain of a postsynaptic neuron (Doiron et
al., ; Chance et al., ; Prescott, and De Koninck, ), and on the basis
of this result we argue that the supervisor can also control and modify the gain
variable gi .
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In summary, the supervisory circuit in our model can modify both the shift
and the gain variables for each of the neurons in the network (though in our ex-
amples, only the input neurons are modulated) through normal excitatory and
inhibitory synaptic pathways. To reiterate what was said in the introduction, our
goal is not to introduce a new algorithm, but rather to see if existing algorithms
can still operate when supervision is restricted to well-established cortical path-
ways.

Function Approximation

We apply the proposed mechanism of supervised learning to function approxi-
mation, a well-studied task in the artificial neural network literature with obvi-
ous applications to biological systems (Poggio, ). In this task, network neu-
rons are driven by a stimulus characterized by a single variable θ . The goal of
learning is to produce a network output that matches a specified function or set
of functions of θ . This is a very easy task for neural network learning that can
be accomplished with a single layer of synapses modified, for example, by a delta
learning rule (Widrow and Hoff, ). We consider this task because it allows
us to illustrate clearly the features and limitations of the scheme we are studying.
Specifically, we consider a two-layer feedforward network architecture with

purely excitatory connections, as shown in figure .. The network consists of
N input units, responding to a stimulus variable θ (which takes values in the
range from 0 to 2π), that drive M output units. The input units of the network,
indicated by the lower row of circles in figure ., are driven by currents that are
Gaussian functions of the difference between θ and a preferred stimulus value,
which is different for each input unit. Specifically, the input to unit i , Ii , is given
by

Ii = G(θ − θi ) + G(θ − θi − 2π) + G(θ − θi + 2π) , (.)

where

G(θ) = 1.5 exp
(

−
θ2

2

)
− 0.5 . (.)

The three terms appearing in equation . impose an approximate periodicity on
the network, which is convenient (though not essential) because it removes edge
effects. The values of the preferred stimulus parameters, θi for i = 1, 2, . . . , N ,
are uniformly distributed over the range from 0 to 2π . The response of input
unit i to stimulus θ , ri (θ), is given in terms of the input Ii by equation ..
The output of the network consists of the firing rates of the units appearing

at the top of figure .. These are determined by the same firing-rate function as
in equation ., but their inputs are given by a weighted sum of the firing rates of
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Figure 3.1: The function-approximation network. Input units (lower row of circles) receive input
tuned to the value of a stimulus variable θ , as indicated by the Gaussian curves. The input units
drive output units, shown at the top of the figure, through synaptic connections that are subject
to Hebbian plasticity. A supervisor modifies the response properties of the input units through
feedback projections. The task is to induce the firing rates of the output units to match specified
functions of the stimulus variable.

the input units. Specifically, using Ra(θ) to denote the response of output unit
a (for a = 1, 2, . . . , M) to stimulus θ ,

Ra(θ) =
1

1 + exp
(

−ga

( N∑
i=1

wairi (θ) − sa

)) . (.)

Here, wai is the weight of the connection from input unit i to output unit a.
When we consider networks with a single output unit, we drop the output index
and denote the weight from input i simply as wi . The goal of learning for this
network is to match the outputs Ra(θ), as closely as possible, to a set of stimulus-
dependent target functions Fa(θ).

   

The supervisor in our network model computes an error by comparing the firing
rates of the output units to the values of the target functions for each stimulus.
It uses a stochastic gradient descent algorithm to adjust the gain and shift values
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for the input units of the network of figure . in such a way that the error

E(θ) =
1
2

M∑
a=1

(Ra(θ) − Fa(θ))2 , (.)

is reduced after each stimulus presentation. Here, Ra is the response of output
unit a and Fa is the target response for that unit.

As stated above, synaptic weights in the network are subject to Hebbian
synaptic plasticity as described by equations . and ., with εw = 0.03 and
α = 5.5. Error-based supervision is used to vary the shift and gain parameters
(si and gi ) that control neuronal responsiveness. These are set to the initial val-
ues si = 1 and gi = 3 for all units, but are then changed by the supervised
learning algorithm. During each run, a stimulus value θ is chosen randomly in
the range from 0 to 2π , and the resulting output rates are computed. Then, the
shifts and gains for all the input units of the network are updated according to
the rules

si → si − εs
∂ E(θ)

∂si
and gi → gi − εg

∂ E(θ)

∂gi
, (.)

where εs and εg are small parameters that control the rate of response modula-
tion. For our simulations, these took the values εs = εg = 0.2/M . This process
is repeated until performance stops improving.

We could also adjust the corresponding parameters sa and ga for the output
units, but for the examples we give this is unnecessary. Instead, these have been
held at their initial values sa = 1 and ga = 3 for all a. The adjustment of
output shifts and gains is unnecessary in the examples we present because we
have chosen parameters so that the mean of the output response, averaged across
all stimuli, is equal to the stimulus-average of the target function. This is not
essential, it was done primarily to simplify the presentation.

It is useful to compare and contrast our approach with the conventional use
of the delta rule in this situation. In the conventional approach in which synaptic
plasticity is supervised, the error in equation . is differentiated with respect
to the synaptic weight wai . This weight is then updated according to the rule
(assuming a gain of one)

wai → −εw

∂ E
∂wai

= εw (Fa − Ra) R′
ari , (.)

where R′
a stands for the derivative of the response of output unit a with respect

to its input current. The term (Fa − Ra)R′
a can be thought of as an error signal
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Figure 3.2: Effects of shift and gain modulations on firing rates and response tuning curves. The
upper plots show neural responses as a function of the input current I , and the lower plots show
them as a function of the stimulus parameter θ . a) Changing the shift variable slides the response-
current curve to the left or right and moves the tuned response up and down. b) Changing the
gain variable changes the slope of the response-current curve and has a roughly multiplicative ef-
fect on the tuned response. c) Changing both variables changes the width of the tuned response.

sent to output unit a that, in conjunction with the presynaptic firing rate ri ,
controls modification of the weightwai .
In contrast, the error signals in our scheme, given by the derivatives in equa-

tion ., are “sent” to the input units of the network rather than to the output
units. Furthermore, these guide the modification of parameters affecting neu-
ronal responses, not synaptic weights. Although the supervised learning rules
in equations . and . may look similar in terms of mathematical abstraction,
we stress that the modification described by equation . can be generated by
normal, ionotropic synaptic transmission from the supervisory circuit to the tar-
geted neuron, whereas those of equation . cannot. This is why we are consid-
ering such a modified form of delta-rule learning.
The ability to change both the shift and gain variables that determine neu-

ronal excitability provides considerable flexibility in modulated neuronal respon-
siveness. The different effects of shift and gain modulations on the firing rate of a
model neuron, both as a function of its input current and of the stimulus variable,
are shown in figure .. Changing, the shift parameter translates the firing-rate
curve right and left or, plotted as a function of the stimulus variable, shifts the
tuning curve up and down (figure .a). Changing the gain variable modifies the
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slope of the firing-rate curve and modulates the firing-rate tuning curves in a
roughly multiplicative manner (figure .b). Adjusting both variables allows the
width of the tuning curve to be changed without an ‘iceberg’ effect (figure .c).

Results

In studying supervised learning through responsemodulation, we separately con-
sider networks with a single output unit and networks with multiple output
units. Obviously, the case of a single output unit provides less of a challenge
than multiple outputs to any learning algorithm. Nevertheless, we consider it
here because it provides a clear example of the interaction between supervised
response modulation and unsupervised synaptic plasticity.We begin by showing
that supervised response modulation, acting by itself without any accompanying
synaptic plasticity, leads to a solution of the function approximation problem
with a single output unit. This has some implications for network switching that
we mention briefly. However, it does not provide a satisfactory long-term solu-
tion because the supervisor-inducedmodulations do not produce any permanent
changes in the network. This means that the task can only be performed, even
after learning, with continuous input from the supervisor. This problem is re-
solved by addingHebbian synaptic plasticity to the learning scheme. This allows
the supervisor-induced modulations to be transferred into changes of synaptic
strength. Ultimately, this transfer allows the network to function properly even
in the absence of supervisory input.
Supervised learning through response modulation is more difficult in net-

works with multiple output units. In the multi-output case, situations often
arise in which response modulation, acting without synaptic plasticity, cannot
solve the function approximation task. As an example, consider an input unit
that projects to two output units that are supposed to represent two different
functions. For one of these functions it might be appropriate to enhance the re-
sponse of this input unit, while for the other it may be necessary to decrease
its responsiveness. Clearly without access to the separate synapses that connect
this single input unit to its multiple output targets, both of these criteria can-
not be satisfied. In such situations, Hebbian plasticity does not merely act as
a way of transferring supervisory modulation into permanent network changes,
it must act in concert with response modulation for the task to be learned at all.
This is indeed what happens.We find that a combination of supervised response
modulation and unsupervised synaptic plasticity allows networks with multiple
outputs to compute multiple functions provided that the connection probability
between the input and output layers is less than about %.

..  · 

     

Learning and Switching Through Response Modulation

Because response modulation is the pathway through which supervision affects
network responses in our studies, it is useful to start off by considering what
happens when response modulation acts alone, without the Hebbian synaptic
plasticity that will be added later. Therefore, we begin the study of networks
with a single output unit by showing that function approximation can be accom-
plished solely on the basis of response modulation. For figure ., synaptic con-
nection strengths were held fixed while a gradient-decent supervisor varied the
shifts and gains of the input units. In other words, we used equation . but not
equation . during learning. Figure .a shows the initial state of the network in
which the output response is independent of the stimulus (upper panel), because
all the input units have identical shifts and gains, as revealed by the identically
shaped response curves in the lower panel. After the gradient-descent response
modulation algorithm has acted, the output response matches the target func-
tion (upper panel of figure .b) due to the modulation of responses revealed by
the modified response curves seen in the lower panel. To match the cosine-like
target response, the input units selective for stimuli near  and π have been up-
regulated by the supervisor, while those selective for stimuli near π have been
down-regulated.
Using supervised response modulation, the network can approximate a wide

variety of functions (some examples are shown, along with the distributions of
shift and gain values that produce them, in figure .). It is important to keep
in mind that the distributions of shift and gain variables shown in the left col-
umn of this figure, could arise from specific excitatory and inhibitory inputs gen-
erated by a supervisor circuit. Thus, each function computed by the network
corresponds to a specific pattern of activity within the hypothetical supervisory
circuit. If these patterns of activity are remembered and later recreated within
the supervisor circuit, this will induce the function-approximation network to
compute the target function related to that pattern of activity. Thus, after learn-
ing has taken place, the supervisor can act as a controller, rapidly switching the
input-output relationship of the function-approximation network between pre-
learned states. Although we do not consider this form of switching further in
this paper, it provides an interesting mechanism by which one neural circuit can
control, activate, and switch the function of another (for a related discussion, see
Lukashin et al., ).
In this network, the input unit responses act as basis functions for repre-

senting the output response. Because they do not provide a complete set for
arbitrarily high frequencies, there are limits to the types of functions that can



 ·   

Initial State

O
ut

pu
t R

at
e

In
pu

t R
at

es

π0

1

5

2π

π0

.2

.4

.6

.8

2π

After Modulation

0

.2

.4

.6

.8

π 2π

π0

1

5

2π

a. b.

Figure 3.3: Function approximation by supervised response modulation acting alone without
synaptic plasticity. Upper curves show the response of the single output unit to various stimulus
values (dots) and the target function (line). The lower panels show a sampling of the responses of
the 230 input units as a function of the stimulus value. a) State of the network before learning. All
input responses have the same shifts and gains, and the output is independent of the stimulus. b)
State of the network after learning. The output unit responses match the target function due to
modulation of the input unit responses.

be accurately approximated. Limitations arise when the target function varies
rapidly, as seen in figure .. Although these limitations exist, they are less se-
vere than they would be in a function approximation network that relied solely
on synaptic modification. This is because the tuning curve narrowing seen in fig-
ure .c can somewhat ameliorate problems with approximating rapidly varying
functions.

In the following examples, we choose to approximate sinusoidally varying
functions, and do not present examples with other types of functions. All the
networks shown can produce equivalent results with any target functions for
which the input responses provide an adequate basis.
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Transfer of Learning to Synapses

In the previous section, we considered supervised response modulation acting
alone.
We now add to this a Hebbian plasticity mechanism. In other words, we

now use both equation . and equation . during learning. The combined ef-
fect of supervised response modulation and unsupervised synaptic plasticity is il-
lustrated in figure .. As before, the network is initialized with uniform weights
and all shifts and gains set to the same values. The supervisor then modifies re-
sponse properties to minimize the output error. Early on during the learning
process (top row of plots), the performance of the network relies almost entirely
on the response modulation of the input units produced by the supervisor (il-
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lustrated by the distribution of input responses in the top row, left panel). At
this point, the weights have hardly changed from their initial values (as seen
in the top row, center panel). However, as the simulation progresses, the weight
changes become progressively larger (second row, center panel), and the response
modulations become progressively smaller (second row, left panel). Ultimately,
the weights take on the cosine shape of the target function (third row, center
panel), and the responses are almost uniform for all the input units (third row,
left panel), as they were at the beginning of the learning process. Note that a sta-
ble equilibrium is reached whenHebbianmodification and responsemodulation
act together. Once the response modulation and Hebbian plasticity have equili-
brated, the supervisory input can be removed altogether, returning all shifts and
gains to their default values, and yet the network can still generate a good approx-
imation of the target function (bottom row of figure .) (although, for stability,
this necessitates the deactivation of Hebbian plasticity). Unsupervised synaptic
plasticity thus allows the supervisor to contribute progressively less as the bur-
den of representing the target function is taken up by the synapses.

Supervised responsemodulation plays three critical roles in guiding theHeb-
bian development of synapses capable of performing the function approximation
task. First, because supervised response modulation acting alone can solve the
task, the supervisor can act through the input units to effectively clamp the out-
put to the correct response profile while Hebbian plasticity is taking place. Sec-
ond, by increasing the responsiveness of appropriate input units while clamping
the output to the target function, supervised response modulation sets up the ap-
propriate pattern of correlation across the synapses of the network to guide Heb-
bian modification. For example, input units that are important contributors to
the correct output response will be pushed to high levels of responsiveness by the
supervisor, enhancing their correlations with the correctly clamped output unit.
This causes the synapses connecting such units to the output to grow rapidly.
Input units not needed for the task will be made unresponsive by the supervi-
sor, so their synapses to the output unit will not be enhanced by the Hebbian
modification rule. Instead these synapses will be weakened due to the synaptic
normalization constraint.

Finally, we consider a third role for supervised response modulation on the
basis of an analysis of Hebbian modification. The form of synaptic plasticity we
are using, Hebbian synaptic modification in conjunction with divisive normaliza-
tion, ultimately sets synaptic weights in this case equal to

wi =
α〈Fri 〉∑
j
〈Frj 〉

(.)
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ulation (top row of plots) to relying primarily on the pattern of modified synaptic weights (third
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where

〈Fri 〉 =
1

2π

∫ 2π

0
dθ F(θ)ri (θ) . (.)

To simplify the analysis, we consider a linear approximation for the response
function of the output unit, rather than the full sigmoidal form of equation ..
In this case and for these weights, the condition that the output responsematches
the target function,

R =

N∑
i=0

wai ri = F , (.)

requires that

α

N∑
i=1

ri (θ)ri (θ
′) = δ(θ − θ ′)

N∑
j=0

〈Frj 〉 . (.)

The third role of supervised response modulation is to make this equation as
near to an equality as possible. The accuracy with which the sum on the left
side of this equation can match a δ function profile depends on the narrow-
ness of the tuning curves of the input units. This places a limit on the degree
to which rapidly varying target functions can be reproduced but, as mentioned
above, modifications in the gain and shift variables can improve this situation by
narrowing the input tuning curves. More importantly, supervised response mod-
ulation acts to assure that the normalization condition implied by equation .
is met, and this is what ultimately allowsHebbian plasticity to solve the problem
(Salinas and Abbott, ). Thus, by acting on these multiple levels, supervised
response modulation guides Hebbian plasticity to a solution of the function ap-
proximation task.

    

Networks with multiple output units present a greater challenge to the form of
supervised learning we are proposing than do single-output networks. In partic-
ular, situations frequently arise where the representation of different functions
by different output units cannot be achieved by response modulation alone due
to shared input. Two cases are simple to analyze. If the connectivity between
the input and output units is all-to-all with equal weights, response modulation
alone is clearly unable to produce different responses in the output units. With
all-to-all coupling, all the output units receive the same total drive, and whatever
modulation is done at the input level affects all of the output units in the same
way. Unsupervised synaptic plasticity does not help because the input correlation
structure seen by the synapses to each output unit is identical, so the synapses

..  · 

will all be modified in an identical manner. Basically, the problem with all-to-all
coupling is symmetry; all the output units are equivalent and supervised modu-
lation of input responses is not sufficient to break this symmetry and allow the
output units to respond differently to the stimulus. Although we have assumed
that the synapses take identical values, setting the initial synaptic weights to dif-
ferent values does not fix this problem.
At the opposite extreme, if the coupling from input to output units is so

sparse that each input unit projects to just a single output unit, the situation
reduces to multiple copies of the single-output case, and the analysis becomes
a trivial extension of what was done in the previous section. In this section, we
consider intermediate cases where the input-to-output connectivity is not all-to-
all, but there is nevertheless considerable overlap in the input to different output
units. We start by considering the case of two-output units and construct net-
works with various amounts of overlap in the projections they receive from the
input units. For an overlap of q , the number of input units that project to both
output units is q N , and the number that project to only a single output unit it
(1 − q)N . We ask whether, in such cases, unsupervised synaptic plasticity can
exploit small differences in the drive to each output unit to break the symmetry
and allow the output units to represent different functions.
Figure . illustrates the ability of unsupervised synaptic plasticity to play

the role of a symmetry-breaking mechanism. In the first panel, supervised learn-
ing acting without synaptic plasticity has set the shifts and gains to their opti-
mal values, but due to the degree of interference caused by shared input, the
approximation is quite poor and neither target function has been matched. The
network has essentially split the difference between the two functions, with only
small disparities between the responses of the two output units. However, when
Hebbian plasticity is activated, it is able to exploit and amplify these small differ-
ences to improve performance dramatically. This ultimately leads to a match of
the two different target functions (center panel of figure .). At this point, the
supervisory input is no longer necessary (provided that the Hebbian process is
halted). Thus, the combination of supervised response modulation and unsuper-
vised synaptic plasticity allows the network to perform this task at a level that
could not be achieved via response modulation alone.
The problem of indirectly supervising the plasticity of N M synapses bymod-

ulating only N neurons might, at first, appear to be a crippling limitation of re-
sponse modulation. The example of figure . shows at least one case in which
this problem is not nearly as severe as might have been imagined. Separation of
the two output units could still be achieved when they shared up to % of their
inputs. However, it is critical to the success of supervision by response modula-
tion that the requirement of a unique component for the input to each output
unit scale appropriately as the size of the network and the number of output
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units increase. Initially, we investigate this issue by varying the amount of shared
input in a network with two output units.
The result of varying the proportion of shared inputs in two-output net-

works of different sizes, when both supervised response modulation and unsu-
pervised synaptic plasticity are active, is shown in figure .. In this figure, and
in figure ., performance is quantified by computing the error of equation .,
divided by the number of output units. The left panel of this figure shows that,
when learning occurs via response modulation alone without synaptic plasticity,
errors begin to grow once the proportion of shared inputs exceeds % (dashed
curves in figure .a). Performance is virtually identical for different input pop-
ulation sizes. With Hebbian plasticity included, the required number of unique
inputs decreases dramatically, with little error accumulating until –% of in-
puts are shared (solid curves in figure .a & b). The point of the transition
from small errors to large errors appears to be roughly the same for all the net-
work sizes studied (figure .b). The main effect of increasing the number of
input units is to make the transition point, where the function approximation
network fails, sharper. This suggests that a discontinuous phase transition oc-
curs at a critical percentage of about % shared input in the N → ∞ limit.
We now extend these results to networks with more than two output units.

In this case, the proportion of shared inputs (q) is not appropriate for describing
all the different possibilities for sharing projections from the input units. Instead,
we use the connection probability (p) to characterize the networks we study. To
construct these networks, we introduce a connection between any one of the
N input units and any one of the M output units with probability p. If such a
connection is formed, it is subject to Hebbian plasticity. If no connection forms
during this stochastic initial wiring, the connection remains absent for the entire
duration of the simulation. The connection probability controls the sparseness
of the network in that small values of p correspond to sparse connectivity.
Figure . shows function-approximation errors for networks with differ-

ent numbers of output units, as a function of the connection probability p, for
two sizes of input unit populations. In this case, both response modulation and
synaptic plasticity are activated. As in the two-output case, interference does not
become a serious impediment to learning until p reaches the .–. range, indi-
cating that truly unique inputs are not necessary. Rather, the requirement is a
certain degree of sparseness. Also noteworthy is the fact that the output popu-
lation size can approach ¹⁄₃ of the total number of inputs before performance
begins to suffer from interference (provided p values are not too large).
Our results indicate that connection probability is the dominant factor that

controls whether a network withmultiple output units, using both supervised re-
sponse modulation and Hebbian plasticity, can function properly. The required
sparseness in the connectivity is not stringent. Furthermore, approximation of
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Figure 3.7: Error as a function of the proportion of shared input for a two-output network with
different numbers of input units. Dashed lines show the mean error per output unit resulting
from supervised response modulation without synaptic plasticity. Solid lines are from runs that
also employed Hebbian plasticity. Individual lines correspond to different numbers of input units
(N ). The functions being approximated are cosine and sine. a) Network performance degrades
as the proportion of inputs projecting to both outputs increases. b) Detailed view of the results
for supervised response modulation with Hebbian plasticity shown in panel a.
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Figure 3.8: Error as a function of network connection probability for different numbers of output
units. The functions being approximated are cosines with phases ranging from 0 to 2π , equally
spaced between the output units. a) A network with 200 input units. Error increases rapidly for
p > 0.93 regardless of the number of output units. For 50 and 70 output units, the error is larger
for all p values. b) For a population of 400 input units, the results are similar, except that overall
performance only degrades when there are 75 output units.

multiple functions is possible even when output population size is a significant
fraction of the total input population size.

The analysis of networks with multiple output units is more difficult than in
the single-output case, but some of the same basic principles apply. In this case,
the supervisor cannot clamp the output units to their target functions, but the
existence of even a small number of “symmetry-breaking” synapses is sufficient to
break this impasse. These synapses initially get quite strong and drive the output
units away from the degenerate state in which they are all the same, which starts
off the combined response modulation-Hebbian learning process. Through this
process, the bulk of the synapses ultimately come to obey the multi-output gen-
eralization of equation .,

wai =
α〈Fari 〉∑
j
〈Farj 〉

. (.)

Similar to the result in the one-output case, and making the same linear approx-
imation, matching of the target function with these synaptic weights requires
that

α

N∑
i=1

ri (θ)ri (θ
′) = δ(θ − θ ′)

N∑
j=0

〈Farj 〉 . (.)
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Subject to the same constraints on the approximation of the δ function, these
equations represent M constraints that need to be satisfied by appropriate ad-
justment of the 2N shift and gain variables of the input units, which should be
possible to satisfy when M < N . The key to making the combined response
modulation-synaptic plasticity scheme work is that Hebbian modification re-
duces the problem of setting pN M synaptic weights to the problem of satisfy-
ing the M constraints appearing above, and this can be done by the supervision
through its control of the 2N shift and gain variables.

  

The supervisor used in the simulations discussed thus far employed a gradient
descent algorithm to modify intrinsic response properties on the basis of the
error generated by each stimulus. A biological supervisor circuit is more likely to
operate under a reinforcement-based scheme. As a first attempt at constructing
such a supervisor, we have implemented amodel using a stochastic search guided
only by a reward signal that reflects network performance. Related ideas have
been applied to the supervision of synaptic plasticity (Barto et al., ; Mazzoni
et al., ; Jabri and Flower, ; Williams, ; Cauwnberghs, ; Doya
and Sejnowski, ; O’Reilly, ; Xie and Seung, ; Seung, ).
For stochastic reward-based supervision, two N -dimensional “modification”

vectors, vs and vg , of unit length were generated randomly, one for shifts and
one for gains. For all i values, the shift and gain of unit i was incremented by an
amount proportional to component i of the appropriate modification vector,

si → si + vs
i and gi → gi + v

g
i . (.)

Simulations were divided into epochs of  stimulus presentations and error
evaluations. After each epoch, the sum of the  errors was compared to the
summed error from the previous epoch. If this total error was less than it was
previously, the modification vectors were left unchanged. If the summed error
increased from the previous epoch, new modification vectors, vs and vg , were
generated randomly. In either case, the resulting modification vector was then
used to further increment the shifts and gains, as described above. In this study
of random walk learning through response modulation, we do not include any
Hebbian synaptic modification.
This strategy has the effect of steadily, although slowly, reducing the average

error. The paths through modulation space of three input units over the course
of a run are plotted in figure .a. The improvement in performance can be seen
in the reduction in the lengths of the line segments seen in the traces. At the
beginning of the run, most of these segments are relatively long as the network
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Figure 3.9: Learning under the random-walk supervisor. a) The paths inmodulation space of three
input units controlled by the supervisor. All three units started with the same shifts and gains
(marked ‘start’), but these then diverged as the supervisor found values that accomplished the
function approximation task (‘end’). b) The end result is a good approximation (dots) of the target
function (line) by the output unit as a function of stimulus value. In this simulation, 230 input units
drove a single output unit.

makes coarse adjustments to approach the target function. Later, more frequent
trajectory changes appear as the network approaches a solution and makes fine
adjustments.
Figure .b illustrates that this crude strategy is capable of solving the task,

given enough time (in this case  iterations). Thus, a random-walk supervisor
strategy that requires much less information and algorithmic sophistication than
gradient descent can, at least in simple cases, provide adequate supervision.
There are clearly severe limitations on the sizes of networks that can be

trained by this random-walk algorithm. As the network grows in size, the al-
gorithm gets prohibitively slow. In the Discussion, we propose ways that this
problem might be addressed to achieve better scaling of performance with net-
work size.

Discussion

The novel feature of the supervised learning scheme we have proposed is that su-
pervision takes place at the level of neuronal responsiveness rather than synaptic
plasticity. Two apparent disadvantages of this scheme, that it does not lead to per-
manent network modification and that it severely limits the number of elements
being supervised, appear to be far less severe than might have been imagined at
first. By guiding synaptic plasticity that is otherwise unsupervised, supervised re-
sponse modulation can lead to permanent changes that allow a network to oper-
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ate effectively, even in the absence of supervision. Furthermore, Hebbian plastic-
ity can take advantage of small inhomogeneities in randomly coupled networks
to allow independent changes in synapses to output units that share presynaptic
input.
Given that it works, there are some potential advantages of supervising neu-

ronal excitability rather than synaptic plasticity. First, supervision can occur through
ordinary feedback projections that can act rapidly and can target individual neu-
rons independently. Additional advantages concern the nature of the supervisory
circuit. We have not attempted to construct a realistic model of this circuit, but
we envision it as a network capable of maintaining a continuum of stable, self-
sustained patterns of activity (Compte et al. ; Seung et al., ). Such
networks tend to drift, especially if provided with noisy input. Thus, it might
be possible to implement the random walk supervisor as a network with self-
sustained activity and random drift, with the rate of drift controlled by noisy
inputs that are suppressed by reward.
Whatever the form of the supervisory circuit, modulating neuronal respon-

siveness instead of synaptic plasticity has a number of tactical advantages. We
considered two approaches to supervision: gradient descent, which involvesmore
information and mathematical analysis than we would expect from a neural cir-
cuit, and a randomwalkmodel that uses less. A real circuit should lie somewhere
between these extremes. From the point of view of the supervisor, the fact that
there are far fewer neurons than synapses to supervise changes from a disadvan-
tage to an advantage. The supervisor must search in the space of the parameters
it is modifying for a solution to the problem at hand. By reducing the dimension
of this space, supervision of neuronal responses, provided that it works (and
we have shown that it does), is far easier than supervision of more numerous
synapses.
Another advantage of supervising neuronal responses is that the supervisor

can monitor the activities that it is modulating in a way that is impossible with
supervised synaptic plasticity. It is almost inevitable that the function approxi-
mation network, which receives input from the supervisor circuit, would also
send projections to it. Such reciprocal connectivity is a typical feature of neu-
roanatomy. These projections allow the supervisor to monitor the activity of the
units it is supervising and use this information to guide learning. For example,
this information could be used to reduce the dimension of the space in which the
supervisor must search for solutions of the task being learned. Consider, for ex-
ample, two input units in the function approximation network that have almost
totally overlapping response profiles. It is rather wasteful for the supervisor to
vary the response properties of these two neurons independently, and yet this
is what was done in the random walk model we studied. A more “intelligent”
supervisor would use information about the correlations between the units it is
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modulating to find strategies that are most likely to produce large changes in the
network being supervised, and to avoid wasting time generating modulations
that have little effect. Thus, projections from the supervised units to the supervi-
sor could be part of a secondary modulatory process that allows the supervisor
to learn about learning.

 

Principal Component-based
Strategies for Supervised Learning

Introduction

Learning often takes place solely through the reinforcement of improved per-
formance. Such reinforcement-based learning is challenging because no infor-
mation is provided to indicate how a task should be done or suggest how per-
formance can be improved. Instead, strategies must be generated internally and
evaluated solely on the basis of the reinforcement they generate.
Faced with such a dearth of information, models of learning often rely on

a random-search approach in which reinforcement guides an otherwise random
walk in the space of parameters controlling task performance (Barto et al., ;
Mazzoni et al., ; Jabri and Flower, ; Williams, ; Cauwnberghs, ;
Doya and Sejnowski, ; O’Reilly, ; Xie and Seung, ; Seung, ). In
a neural network, such a scheme typically involves randomly changing synaptic
strengths or neuronal excitabilities and keeping or rejecting those changes on the
basis of reward. For example, in the scheme we use, which is based on bacterial
chemotaxis, changes are made by moving along a straight line in the space of
parameters as long as performance improves and reward is provided. If at some
point reward is denied—indicating worsening performance—the system starts
moving in a new, randomly chosen direction.
Reward-based learning strategies of this type typically converge to a set of

parameters that optimizes task performance if they are applied for a sufficient
time. Because this parameter search is random, this time can be very long, and
it typically scales badly (i.e., increases dramatically) as the size of the network
performing the task increases. In most cases, the space of network parameters
is enormous, and the system can easily get lost when reinforcement is the only
guide.
Here we explore the idea that the convergence time for reinforcement-based,

random-walk learning schemes and its scaling with network size can be improved
dramatically by reducing the effective dimension of the parameter space. This is
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a rather obvious strategy, and we use a standard dimensional reduction method,
principal component analysis () to implement it. The novelty is that we im-
plement both the dimensional reduction scheme and the mechanism by which
neuronal excitabilities and synaptic strengths are modified through well-known,
local synaptic modification rules acting along biologically plausible pathways.

Methods

    

To explore the role of dimensional reduction in reinforcement learning, we chose
a well-defined task of obvious behavioral and cognitive relevance (Poggio, ),
function approximation. In the network we consider, N input units respond to
inputs that are tuned to the value of a particular stimulus parameter (in our
case, an angle θ), and they drive an output unit, making its firing rate follow a
specified function of the stimulus value (the network can easily be extended to
include more than one output unit, but this is unnecessary for our purposes).
The learning task consists of adjusting network parameters so that the firing
rate of the output unit matches a specified target function. This is the task to
which we apply reinforcement learning because it allows us to illustrate clearly
the features and limitations of the scheme we are studying.
The architecture of the network is shown in figure .. Each input unit is

characterized by a firing rate, ri , with i = 1, 2, . . . , N , that is given by a sig-
moidal function of the total synaptic current it recieves. The synaptic current is
divided into two terms: a stimulus current Ii (θ) that depends on the stimulus
angle θ , and a bias current Ji that is independent of the stimulus and represents
synaptic currents arising from the supervisor circuit shown in figure .. Thus,

ri =
1

1 + exp (−g(Ii (θ) + Ji − s))
. (.)

The parameters s and g control the shape of the sigmoid. The shift parameter,
s = 0.9, determines the location at which the firing rate reaches its half-maximal
value, and the gain parameter, g = 5, specifies the slope at that half-maximal
point. The firing rate is normalized so that its maximum value is .
The stimulus current Ii (θ) that appears in equation . is constructed from

Gaussian functions of the difference between the stimulus variable θ and the
preferred stimulus value for unit i , θi ,

Ii (θ) = G(θ − θi ) + G(θ − θi − 2π) + G(θ − θi + 2π) , (.)
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Figure 4.1: Network for function approximation. Input units (lower circles) are driven by input
current (tuning curves at bottom) that is a Gaussian function of the difference between a stimu-
lus angle θ and a preferred stimulus value for each unit. The input sends projections to both the
output unit (upper circle) and units within the supervisory circuit. Supervisor units also synapse
onto each input unit. In addition, The supervisor receives limited information about network per-
formance in the form of reward which it uses to direct its influence on the input units.

where

G(θ) = 1.5 exp
(

−
θ2

2

)
− 0.5 . (.)

The three terms appearing in equation . impose an approximate periodicity on
the network to match the fact that θ is an angle. This stimulus current makes the
input units selective for different values of θ , and we can write their firing rates
as ri (θ). The preferred stimulus values, θi for i = 1, 2, . . . , N , are uniformly
distributed over the range from 0 to 2π (see figure .), so the input units collec-
tively represent stimulus values over the entire range of angles.

The output unit is driven by the input units through a set of modifiable
synapses, so its firing rate R is given by a weighted sum of their rates,

R(θ) =

N∑
i=0

wi ri (θ) . (.)
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The weight wi represents the strength of the synapse from input unit i to the
output unit. The task for learning in this network is to make R(θ) match, as
closely as possible, a specified target function F(θ). In our case, this is done by
presenting random values of θ to the network on learning trials and providing
feedback in the form of a reward or reinforcement signal that indicates improved
performance.
The task of making the output unit match the target function, i.e., setting

R(θ) = F(θ), is assigned to the supervisor circuit shown schematically in figure
.. The standard way of doing this is to have the supervisor adjust the synaptic
weights between the input and output units of the network using a delta learning
rule (Widrow andHoff, ;Widrow and Stearns, ).We do not follow this
procedure for two reasons. First, the delta rule requires that the supervisor has
knowledge of the target function and can determine the error that the network
makes on each trial. In reinforcement learning this information is not available.
Second, delta-rule learning assumes that the supervisor can control synaptic
modification, but there is little evidence for such control of synaptic plasticity in
biological circuits. Instead, we assume that the supervisor circuit interacts with
the input units solely through conventional excitatory and inhibitory synapses
arising from the pathway from the supervisor to the input units depicted in fig-
ure .. The input from the supervisor circuit to input unit i is represented by
the bias current Ji . Thus, in our biologically realizable scheme, the supervisor
modifies the responses of the input units on the basis of a reward signal through
ordinary excitatory and inhibitory synapses.
In prior chapters we have examined this form of learning in a supervised

rather than reward-based scheme. A pair of results are particularly relevant to
the current work:

• It is possible to get the firing rate of the output unit R(θ) to approximate
the target function F(θ) solely by having inputs from the supervisor ad-
just the bias currents of the input units to appropriate values. This allows
the network to perform the function approximation task as long as the
supervisory inputs are maintained at the proper levels.

• If aHebbian form of synapticmodification is implemented at the synapses
between the input and output units, the information about how to per-
form the function approximation task transfers spontaneously from the
bias currents to the synapses.When this transfer is complete, the network
can perform the task without any input from the supervisor.

Thus, in this scheme, learning is a two-component process. The excitatory and
inhibitory input from the supervisor to the network adjusts the bias currents of
the input units to improve network performance. At the same time, the synapses
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from the input units to the output unit are modified by Hebbian plasticity. This
transfers the improvements induced by supervisory input into permanent changes
within the network that ultimately allow it to perform the task successfully, even
without supervisory input.
A challenge to this two-component scheme is that reinforcement-based su-

pervision and Hebbian plasticity occur together. If reinforcement learning is
too slow or spends too long in the wrong parts of parameter space, the Heb-
bian component will “lock in” modifications that are detrimental to task per-
formance, which can destroy convergence. Thus, it essential for us to find an
efficient reinforcement-based scheme that established the correct biases in the
input units rapidly enough to keep the unsupervised Hebbian plasticity mecha-
nism on track. For this reason, we begin our study of reinforcement learning by
focusing solely on reinforcement-based modification of input unit bias currents
by the supervisor circuit, leaving the analysis of the addition Hebbian compo-
nent until the end.

 - 

The supervisor circuit shown in figure . is responsible for making adjustments
to the network on the basis of reward reinforcement to improve performance. To
do this, the supervisor must explore the space of network parameters by generat-
ing different patterns of excitation and inhibition to the input units.
In a direct application of these ideas to the network of figure ., the supervi-

sor circuit would consist of N units with activities vi , for i = 1, 2, . . . , N (we
allow vi to be either positive or negative to represent excitatory or inhibitory
inputs provided by the supervisor even though the firing rates of the individual
supervisory units would, of course, be positive). The activity of supervisor unit
i introduces a bias current into input unit i given by Ji = vi .
We express the activity of the supervisor circuit as the product of a vector of

fixed length with components ui describing the pattern of activity in the circuit,
and a scale factor c that represents the level of excitability of the entire circuit,
so vi = cui . The pattern of activity described by ui is similar to the sustained
activity seen in models of short-term memory (Compte et al. ; Seung et al.,
), and it could easily be generated by such a model (although we will not do
this here). The overall factor c could represent the effects of a global modulator
acting on the circuit.
The reinforcement-based randomwalk strategy can now be specific in terms

of the effects of reward on the factors c and ui that determine the supervisory
activity vi = cui , which in turn determines the bias currents for the input
units. As long as reward is obtained, supervisory excitability changes according
to c → c + ε, where ε is a small parameter that determines the learning rate.
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As stated above, this could be due to the effects of a reward-induced modulator.
If reward is not obtained, the vector describing the pattern of supervisory activ-
ity is changed by choosing a new set of components ui randomly. This could be
realized by having a secondmodulator or noisy input temporarily disrupt the sta-
bility of the self-sustained activity in the supervisory circuit. These two actions
completely describe the learning strategy we use although, thus far, we have dis-
cussed it and its implementation within the context of a direct approach not the
dimensionally reduced scheme we propose.
Chapter  demonstrated that the direct scheme canwork if N is small enough,

but it is slow and gets even slower as N increases. The basic feature we exploit to
get around the limitations of the direct approach is the fact that the firing of dif-
ferent input units is correlated. Two units with highly overlapping input tunings
tend to fire together at similar rates. If the function being approximated varies
slowly on the scale of the separation between preferred stimulus values (i.e., if
F(θi ) ≈ F(θi+1), it does not make sense to vary the two bias currents Ji and
Ji+1 independently. The best strategy is to vary those combinations of bias cur-
rents that have the biggest impact on network output. These combinations can
be determined by performing principal component analysis () on the corre-
lation matrix of the input units. The key result, present in the following section,
is that this can be accomplished by applying appropriate forms of synaptic plas-
ticity to the synapses between the input units and the units of the supervisor
circuit.

 

The learning strategy based on dimensional reduction is similar to the direct
reward-guided random-walk strategy discussed above, except that the dimen-
sionality of the space being searched is much smaller. In this case, the modifica-
tion of the bias current is controlled by only n << N supervisor units through
the equation

Ji =

n∑
a=1

wiava =

n∑
a=1

wiacua , (.)

where va for a = 1, 2, . . . n are the activities of the n supervisor units, andwia
represents the strength of the synapse from supervisor unit a to input unit i . The
implementation of reinforcement learning in this dimensionally reduced scheme
proceeds exactly as described above for the direct approach. After rewarded tri-
als c → c + ε, and after non-rewarded trials the components ua are reset to
randomly chosen values.
The key to making the modifications described by equation . as effective

as possible is to make sure that the synaptic weight factorwia is proportional to
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the i th component of the ath principal component of the input-input correlation
matrix. In other words, we want wia ∝ ξa

i , where ξa
i is the i th component of

the eigenvector of the input-input unit correlation matrix with the ath largest
eigenvalue. To achieve this, we exploit a virtually universal property of neural cir-
cuits, the reciprocal nature of interconnections. The supervisor can obtain infor-
mation about the correlations between the input units through the projections
from the input units to the supervisor depicted in figure .. We refer to these
projections as the ascending pathway to the supervisor, and call the projections
from the supervisor to the input units the descending pathway. Methods exist
for setting the ascending synaptic weights proportional to the principal compo-
nent eigenvectors of the input-input correlation matrix (Oja, ; Sanger, ).
This is exactly what we want to achieve, but for the wrong set of synapses. We
need to set the descending (not the ascending) synaptic weights proportional to
these eigenvectors. We now show that this can be achieved by applying ordinary
Hebbian-type plasticity to the descending synapses.

We denote the strength of the ascending synapse from input unit i to super-
visor unit a by w′

ai . Initially, the supervisor units are driven by the input units
through these synapses, so the firing rate of supervisor unit a is determined by

va =

N∑
i=1

w′

airi . (.)

The first step in setting the descending synaptic weights is to apply synaptic plas-
ticity to the ascending synapses that is essentially Hebbian but with the added
wrinkle of subtracting out contributions already accounted for by other supervi-
sor units (Sanger, ),

w′

ai → w′

ai + η′va

(
ri −

a∑
b=1

vbw
′

bi

)
(.)

on every time step of the simulation, with η′ setting the learning rate, and va
and ri the firing rates of supervisor unit a and input unit i , respectively. For
the a = 1 supervisor unit, this rule is identical to the standard Oja rule (Oja,
; see below) which set w′

1i ∝ ξa
1 , as is well known (Dayan and Abbott,

). For the other supervisor units, the subtractive sum in equation . assures
that w′

ia ∝ ξa
i for a = 2, 3, . . . n. The Sanger rule thus sets the connection

strengths in such a way that the weight vector from the input units to the a = 1
supervisor unit is proportional to the eigenvector with the largest eigenvalue, the
a = 2 unit to the eigenvector with the next largest eigenvalue, and so on (see
figure .).
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Figure 4.2: Feedforward synapses in the supervisory pathway. Each input unit in the network
sends projections to all n cells in the supervisor circuit. Plasticity in these synapses is governed
by the Sanger rule; a modified Hebb-like scheme that results in the pattern of synaptic weights
being proportional to the principal components of the correlation matrix of the input signals.

The second step in setting the descending synapses properly is to transfer
the weights from the ascending to the descending pathway. Surprisingly, this can
be done by having ordinary, multiplicatively constrained Hebbian plasticity act
on the descending synapses. Specifically, we apply the Oja plasticity rule (Oja,
) to the descending synapses

wai → wai + ηva (ri − vawai ) (.)

on every time step of the simulation, where the parameter η controls the learning
rate. The weight decay term vawai in this rule ensures that the weight vector
converges toward unit length, preventing the runaway potentiation that would
arise form a purely Hebbian rule.
We now consider what happens if, after the ascending weights have been

set to the principal component eigenvectors by the Sanger rule (equation .),
the Oja rule (equation .) acts on the descending synapses while the supervisor
units are driven by the input units according to equation .. The key result
is that the descending synaptic weights are set appropriately to wia ∝ ξa

i for
i = 1, 2, . . . , N and a = 1, 2, . . . n. To see how this result arises, we note
that, when plasticity comes to equilibrum, the Oja rule (equation .) has set
the synaptic weights proportional to the pre-postsynaptic correlation matrix (if
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η is small enough),
wia ∝ 〈riva〉 , (.)

where the angle brackets denote an average over time. Combing this result with
equation ., we find that

wia ∝

N∑
j=1

〈rirj 〉w
′

aj ∝ w′

ai . (.)

The second equality follows from the fact that w′

aj ∝ ξa
i and ξa

i is an eigenvec-
tor of the correlation matrix,

N∑
j=1

〈rirj 〉ξ
a
j ∝ ξa

i , (.)

with a constant of proportionality equal to the eigenvalue of the ath eigenvector.
The above derivation shows that, when the ascending synaptic weights are

proportional to eigenvectors of the input-input correlation matrix, the Oja rule
sets the descending weights proportional to the ascending weights, and thus pro-
portional to those same eigenvectors. That is, wia ∝ w′

ai ∝ ξa
i . Thus, the

mixture of a Sanger rule on the ascending synapses and a Oja rule on the de-
scending synapses accomplished the goal of setting the descending weights equal
to the values needed for the dimensional reduction of reinforcement-based learn-
ing. The fact that we only required that equation ?? be satisfied by the learning
rule for the descending synapses indicates that any correlation-based plasticity,
not only the Oja rule, can be used for this purpose.
Figure . illustrates how the ascending and descending weights become pro-

portional to the principal eigenvectors through synaptic plasticity. In this exam-
ple, the input units were driven by randomly chosen angles activating the input
currents of equation . while the Sanger and Oja rules were applied to the as-
cending and descending synapses, respectively. Because the tuning curves of the
input units are placed uniformly over the range of stimulus angle values, assur-
ing translational invariance (θ → θ + constant is a symmetry), the eigenvectors
of the input correlation matrix are sine and cosine functions of the input unit
preferred angles θi and the principal components are ordered by wavelength. In
other words,  is equivalent in this case to Fourier analysis. This makes it
easy to see that the appropriate synaptic assignments have been made.
The development of the ascending synaptic weights from the input units

onto seven supervisor units on the basis of the Sanger rule can be seen in the left
panels of figure . and the progression of the corresponding descending weights
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Figure 4.3:Development of ascending and descending synaptic weights. Each line represents the
set of synaptic weights to and fromone supervisor unit plotted against input unit number. The left
column depicts the connections from the input units to the supervisor, with synapses modified
over time, from top to bottom, using the Sanger rule. The right column shows the same thing
for synapses from the supervisor to the input units, which are controlled by the Oja rule. In the
top row, before the network begins receiving random input angles, the weights have random
values. Over time (rows below the top show the situations after 256, 1472, and 23,552 trials), the
Sanger rule extracts the principal component eigenvectors from the input correlations and sets
the ascending weights proportional to them. Simultaneously, the descending weights become
proportional to the eigenvector as well.
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according to the Oja rule is shown in the right panels. From random initial val-
ues (top row), the weights to and from the a = 1 supervisor units become equal
to the constant Fourier component by  trials (the second row of plots in figure
.). As the plasticity proceeds (rows – in figure . representing the results af-
ter , , and , trials, respectively), the additional weights to and from
the a = 2, 3, . . . 7 supervisor units take sine and cosine forms. During this
process, the development of the descending synapses tends to lag behind that of
the ascending synapses because the Sanger rule pulls out the principle compo-
nents while the Oja rule transfers these components to the descending weights.
By the lowest panels, when the system has equilibrated, the weights for synapses
to each supervisor unit are paired with weights for synapses from them to the
input units proportional to the same principle component eigenvector. The am-
plitudes of the descending weights are not identical to their ascending siblings,
but are instead related to the corresponding eigenvalues. The unevenness of the
amplitudes has no effect on the reinforcement learning strategy we study next.

Results

   

The dimensional reduction process described in the previous section reduces
the problem of learning to one of setting appropriate supervisor firing rates va
for a = 1, 2, . . . , n to introduce the appropriate biases into the input units
to generate the desired responses in the output unit. This is a much simpler
problem than trying to set the bias currents independently, and the use of de-
scending weights proportional to the principal component eigenvectors of the
input-input correlation matrix assures that a small number (n = 7 in the fol-
lowing examples) of supervisor units has the maximum impact on the activity of
the output units. The price of lowering the dimensionality of the control process
from N , which is typically greater than  in our examples, down to n = 7will
be addressed after we show how the basic scheme works.
Recall that the dimensionally reduced reinforcement learning process for

supervisor unit activities written as va = cua consists of making the change
c → c+ε to the excitability factor if reward is given and randomly choosing new
components ua for the pattern vector if reward is denied. When the network is
in the optimal configuration for task performance, any changes will result in an
increased error. To address this type of end-stage thrashing, the learning rate pa-
rameter ε is decreased as the overall size of the errors made by the network goes
down.
Before showing the results of dimensionally reduced reinforcement learn-

ing, we need to discuss how reward is delivered to the supervisor to determine
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whether it increases its overall excitability or choses a new pattern of activity.

The Reward Procedure

Reward criteria are determined by external factors, not by neural circuits. But
neural circuits determine in a complex way how reward is interpreted and what
results follow from receiving reward. Both of these factors make it impossible
to model the reward procedure uniquely. The reinforcement learning scheme we
propose will work with any reasonable reward scheme, where reasonable means
that reward is based on some cumulative assessment of improvement integrated
over a long enough time to assess whether or not a particular set of parameter
changes is beneficial.We use a simple scheme to demonstrate that reinforcement
learning can work. Undoubtedly, performance could be improved over what we
show by using a more elaborate and clever reward schedule, but our purpose is
to study the actions of the supervisory circuit, not the reward system.
A trial in our learning scheme consists of the presentation of a randomly cho-

sen stimulus angle (θ), which produces a network output R(θ) that is supposed
to match a target function F(θ). The reward procedure is based on whether the
function approximation error, (R(θ) − F(θ))2, averaged over θ values, shows
an increasing or decreasing tendency. To assess this fairly, we must computed
it over a number of trials with different θ values. To do this, the reward after
any trial is based on errors accumulated over the previous  trials. These 
trials are divided into two blocks of . The errors for the most recent block
of  trials are summed, as are the errors for the next most recent block of 
trials (the  trials prior to the most recent block). If the summed error for the
most recent block of trials is less than the summed error for the next most recent
block, reward is given. If the summed error for the most recent block of trials is
larger than that of the next most recent block, reward is denied. This defines our
reward procedure.

   

Dimensionally reduced reinforcement learning is illustrated in figure .. The
left column in this figure shows the response of the output unit as a function of
stimulus angle and the target function that is to be matched. The right column
shows the individual contributions to the total bias current provided to each
input unit by the  supervisory units.
In this simulation, all the supervisor unit firing rates start out at zero (figure

.a right panel), which causes all input units to respond identically to their
preferred stimuli. This, combined with the fact that synaptic weights between
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the input units and the output unit are set equal, in this case results in the output
unit response being uniform with respect to the stimulus (figure .a left panel).
After  trials, (second row of figure .), the supervisor units are bias-

ing the input units, resulting in modulation of the flatline response of the initial
state. The right panel indicates that this response arises primarily from a base-
line shift and a single-cyle cosine modulated bias current that is not well chosen
for the target function. The components that ultimately will be responsible for
a successful function approximation start to develop at this point as well. After
 trials (third row of figure .) a single-cycle sine has become the dominant
factor contributing to the approximation. After , trials (fourth row of fig-
ure .) the general shape of the function has been captured by the uniform
shift combined with this sine wave, but higher frequency components need to
be recruited to account for the detailed shape of the target function. The final
state of the bias currents in the bottom row shows that two higher frequency
sinusoids now contribute, resulting in a successful approximation. Note that the
supervisor units with the highest frequency components were not needed for
this particular target function.

Non-Uniform Sampling Distributions

The connectivity patterns we have seen thus far are equivalent to Fourier modes,
but the schemewe propose is not limited to this translationally invariant case. To
show this, we break the translational invariance by allowing the distribution of
preferred stimulus values for the input units to be non-uniform. Two examples
of this are shown in figure ..
For the left column of figure ., a bimodal distribution was used in which

the peaks had a sampling density triple that of the low-density regions. The as-
cending weights (middle panel at left) that result when the synaptic weights have
equilibrated are decidedly non-Fourier, and are well adapted to the activity cor-
relations among the input units that arise from the bimodal distribution. Rather
than being flat, the first component is bimodal with troughs aligned with the
centers of the regions where input coverage is less dense. The next two compo-
nents are also quite non-sinusoidal with dimpled peaks aligned with the central
low-density region. Nevertheless, there is a doubling of frequency between the
second and third components similar to what is seen in the Fourier-like case. An-
other frequency doubling can be seen between the fourth and fifth components.
The bottom left panel of figure . shows that the Oja rule sets the descending
weights proportional to the ascending weights in this case as well.
Similar results are seen in the right column of figure . for a unimodal dis-

tribution of preferred stimulus angles, with the central region having a density
twice that of the surrounding region. Again the baseline shift of the first com-
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Figure 4.4:Dimensionally reduced reinforcement learning. The left column shows the target func-
tion (black line) and the output of the network for various values of the stimulus angle (grey dots).
The right column depicts the bias currents sent to the network by the supervisor as a function
of the input unit number, with each supervisory unit represented by a separate line. The total
bias current received by each input cell can be determined summing the heights of theses curves.
Rows show results after 0, 1600, 5632, 11,008, and 30,270 trials. As the the bias currents develop
through the reinforcement-based random walk procedure, the initially poor approximation (top
row) changes into a fairly accurate approximation of the target function (bottom row).
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Figure 4.5:Ascending and descendingweights for nonuniformdistributions of preferred stimulus
angles. When the preferred stimulus angles of the input units are not uniform, the components
extracted for the ascending units by the Sanger rule (middle panels) and transferred to the de-
scending weights by the Oja rule (bottom panels) are non-Fourier. The top row shows the two
alternative distributions used.

ponent is distorted, reflecting the non-uniformity in the input population. The
second and fourth components are centered around the high-density peak and
are frequency-doubled versions of each other, whereas the third and fifth compo-
nents are more sine-like but also show frequency-doubling.

Modulation Compensates for Sampling Bias

While the basis functions established by the Sanger rule in these non-uniform
cases seem appropriately well suited to the input population activity statistics,
it is unclear that they represent a sufficient basis set to modulate the network
for the function approximation task. Also, the non-uniformity of the sampling
places an additional burden on the network since, due to the equal synaptic
strengths between the input units and the output, in its default state the net-
work’s output will have shifted from a flatline response to one which mirrors
the sampling distribution. Thus if the distribution over-emphasizes regions in
which a low firing rate is desired, the supervisor must not only move the net-
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Figure 4.6: Function approximation with a non-uniform sampling distribution. (a)When the sam-
pling density of the input cells is not constant, the initial response of the output unit depends
on the stimulus angle. In this instance, a higher density of input units near θ = π causes a
larger output response in that region. (b) Nevertheless, a reward-guided randomwalk procedure,
dimensionally reduced with the appropriate principal components, produces a successful approx-
imation or the target function.

work from a neutral state to a successful one, but actually undo an intrinsic bias
which impedes the task.

Figure .a shows the initial state for a network with the unimodal sampling
distribution seen in figure .. Although the input units all respond to their pre-
ferred stimuli identically and the synaptic weights from the input units to the
output unit all take the same value as in figure ., the output unit response de-
pends on the stimulus angle. The response is largest for stimuli near the middle
of the range because that is where the largest number of input units are respond.
As a result of this, the initial approximation is significantly worse than it would
be in the uniform-distribution case, and the supervisor must overcome this bias
to fit the target function. Nevertheless, as can be seen in Figure .b, once the
reward-guided random walk sets activity of the superisor units properly, the net-
work successfully approximates the target function. Thus, the synaptic strength
distributions extracted by the Sanger process and communicated to the network
through Oja plasticity provide a general solution for constructing an efficient
supervisor strategy regardless of the specific input population statistics.
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The primary motivation for using the Sanger rule-based  approach to super-
vision has been biological plausibility. By requiring less state and reducing dimen-
sionality to the point that a random walk strategy will yield sufficiently high per-
formance, the circuit has reached a level of simplicity such that it could arguably
be implemented with known biological mechanisms. However, if this plausibil-
ity were to come at the expense of performing adequately to reproduce the re-
sults seen with the more memory- and algorithmically-demanding approach of
the traditional, direct-modulation supervisor, the argument becomes less com-
pelling. To address this possibility, we examined the performance of the 
supervisor in a more rigorous manner, and compared its results to those of the
traditional supervisor.

Effects of Input Population Size

Thus far we have emphasized the benefits of dimensional reduction via  in
terms of simplifying the task of the supervisor and improving the speed with
which it can converge upon a solution as compared to a random walk where
the shifts and gains are set independently for each of the N input units. A criti-
cal advantage of the dimensional reduction implemented by the combination of
Sanger andOja rules is that the number of supervisor units is independent of the
number of input units. This means that the poor scaling behavior of the direct
reward-based randomwalk approach as a function of network size is replaced by
a scheme in which convergence time is essentially independent of network size.
While at small population sizes the performance difference between the two

algorithms is merely one of degree, as the population size increases it quickly
becomes the difference between success and failure. That this should be true is
fairly intuitive: the traditional supervisor has two dimensions in its search space
for each input unit, thus each time the population size doubles, the dimension-
ality of search is similarly doubled. While in theory this should only slow the
learning process down, in practical terms it is equivalent to the supervisor being
unable to solve the task for sufficiently large N s. Unfortunately, as can be seen in
figure ., the critical N values are not particularly big.
Error values after different numbers of trials for the direct learning process

are plotted as dotted lines in figure .. The direct scheme performs acceptably
for moderate input population sizes (e.g., , units), but once there are ,
or more input units, the direct approach fails to converge over the number of
trials shown. Although the random walk algorithm ensures that the supervisor
will change any one strategy that increases its error, it may make a serious of
changes to strategies that continue to be detrimental, resulting in the prolonged



 ·  - 

2000
4000
8000
2000
4000
8000

Performance vs Population Size

Epoch

To
ta

l E
rr

or

POPULATION SIZE

2,000 4,000 6,000 8,0000

2

4

6

8

Figure 4.7: Scaling of dimesionally reduced and direct reward-based random walk learning strate-
gies with network size. Total function approximation error is plotted over the course of learning
trials for small, medium, and large networks. Dotted lines show the error for the direct random
walk strategy, which increases dramatically as the network size increases. Solid lines correspond
to the dimensionally reduced scheme and are fairly invariant with respect to population size, with
no substantial difference between the different conditions.

increases in error magnitude seen in figure . for the ,- and ,-unit
cases.
The  approach, on the contrary, is effectively invariant with respect to

the input population size (solid lines in figure .). In this scheme, the burden of
dealing with more input units is handled by the Sanger/Oja learning procedure
on the connections between the input and supervisor units prior to any func-
tion learning. Though there seems to be slightly more noise in the early stages
of learning when the population size is larger, overall the solid traces in figure
. are virtually overlapping. This is not surprising because the dimension of
the parameter space being searched is independent of network size in the dimen-
sionally reduced case, and the principal components have the same shape over
the input distribution independent of its size. Thus the  supervisor is capa-
ble of scaling to much larger population sizes than the direct supervisor, and it
does so with no noticeable performance degradation during the learning phase.

Number of Components and Diminishing Returns

Since learning byway of the -derivedmodulation patterns is essentially equiv-
alent to approximating a waveform by scaling Fourier modes, it stands to reason
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Figure 4.8: Improvements realized by increasing the number of components. Adding additional
principal components (and thus additional cells) to the supervisor is an effective means for im-
proving performance. However, the effect saturates rather quickly. The left panel shows error
traces corresponding to supervisors with differing numbers of components. Predictably, a larger
number of components yields, given time, a lower final error. The right panel depicts the final er-
ror reached in each of these conditions when the simulation is allowed to run until improvement
stops. In this case it appears that using any more than five components is unnecessary, though
using more appears to get the network to its final state more quickly.

that having a greater number of basis functions from which to draw will lead
to a more accurate final approximation. With two or three bases a rough corre-
spondence can typically be established between target and approximation, but
to capture the character of the target function additional, higher frequency, com-
ponents may be needed. This pattern can be seen in the traces of figure .a
which depicts the error over time for networks learning with a varying number
of components represented in the supervisory circuit.
Two noteworthy effects are on display here. The first is that using a smaller

number of components leads to a faster convergence toward the optimal solu-
tion. For example, in the single-component case, the supervisor finds its opti-
mal (though still quite poor) approximation in under  epochs, while the eight-
component supervisor requires nearly  times that period to reach its more
globally optimal solution. Second, increasing the number of components does
in fact reduce the error in the ultimate approximation reached through learning
as can be seen by the steady decreases in the higher cell-count cases.
However, this effect tends to saturate, as can be seen more clearly in figure

.b. Here only the final error values are plotted for each number of compo-
nents used in the learning. Clearly adding more supervisory units improves per-



 ·  - 

formance up to a point, but that point is surprisingly low, in this case showing
that only five components are truly necessary to obtain a minimal error rate.
Of course, the number of components used is dependent on the target func-

tion being approximated.Were it less complicated andmore easily approximated
by a pair of low-frequency sinusoids, improvement would stop after the third
component. If the target function varies quickly with respect to the stimulus
value, more than five components would be needed to capture this higher-frequency
information.

Including Hebbian Modification of Network Synapses

The most obvious benefit of reducing the dimensionality of the space that the
supervisor must search is that it allows such a simple search algorithm to work.
An additional benefit, however, is that it allows a reinforcement-based, random
walk strategy to bring the network to a successful state sufficiently quickly to
guide Hebbian synaptic plasticity within the network itself. The slower speed
with which the traditional supervisor guides learning is actually not a matter of
degree but in practical terms is equivalent to failure. The justification for this
claim is clearest when one considers the problem of transferring the supervisor’s
learning to the network’s internal synapses. According to our general scheme
thus far, the connections between the input units and the output unit (or units)
are static throughout learning. However as we have demonstrated previously in
chapter , by making these synapses plastic and having them obey the Hebbian
Oja rule, the learning which initially occurs within the supervisor as it establishes
the activity patterns for success through its modulatory input sets the conditions
for Hebb to reinforce those activity patterns, transferring the correlations to the
synaptic strengths. We now allow connections to be modified by an Oja plastic-
ity rule during the learning process,

wi → wi + η′′ R (ri − Rwi ) , (.)

with η′′ determining the learning rate.
These two processes—the supervisor homing in on a propermodulation pat-

tern and the intra-network synaptic weights equilibrating around the imposed
activity pattern—may proceed in parallel, however this demands a certain de-
gree of speed and accuracy from the supervisor. Since the Hebb rule is purely
local and does not take into consideration how well the task is being performed,
the activities leading to a bad approximation will be stored just as readily as a
good one. The implications of this can be seen in the comparison of learning
between traditional and  supervision in figure ..
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Figure 4.9: Learning with Hebbian plasticity. When the synapses between the input units and
output unit are allowed to vary according to the Oja rule, the correlations put in place by the su-
pervisor through modulation can be transferred to the network weights. When this is successful,
as in the left column, the supervisor’s modulatory input can ultimately be removed and the net-
workwill continue to perform appropriately. To visualize this, the network’smodulated responses
are plotted as grey dots, and the response resulting solely from the network (with nomodulation)
as white dots. In the pca case, these two lines grow to overlap over the course of learning, show-
ing that by the end the supervisor’s input is no longer necessary to do the task. In the case of the
random walk strategy, the supervisor is unable to quickly reach a modulated solution. Thus the
synapses begin storing the poor approximation, further complicating the supervisor’s task.

In these plots, the modulated response of the network to a given stimulus
is plotted in grey, while its response with modulation removed (i.e., the purely
intra-network synaptic response) is plotted in white. By the second row theHeb-
bian effects have begun to result in changes to the network as can be seen by the
inflections in the white plot lines. In the case of the  supervisor, the network
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is already succeeding at the task as can be seen by the nice agreement between
the target function and the grey plot line. Thus one can assume that theHebbian
learning happening within the network at this point is transferring this success-
ful representation to the synapses.
In the case of the non-dimensionally-reduced random walk supervisor, the

story is quite different. Because of its difficulty with populations of this size, it
has still not achieved a particularly successful approximation of the target func-
tion. Thus the synapses of the network are now learning on a permanent basis
how to reproduce the poor approximation. As the process continues, there is
additional ‘drag’ on the supervisor as it must not only undo its own errors in
deciding on a modulation pattern, but also counteract the network’s intrinsic
maladaptive behavior brought about by early mistakes already transferred to the
network synapses.
Thus by the final row, the  supervisor has managed to adapt its own

modulation as the synapses have accounted for more and more of the behavior
to the point where the ‘modulated’ and non-modulated states are more or less
identical—suggesting that the degree of actual modulation going on at this point
is quite minimal. In the case of the traditional supervisor, the process has broken
down completely, it seems to be stuck in the same position as before, with the
poor-performing modulated activity pattern giving rise to an equally poor synap-
tic response, with each working to the other’s detriment.



In this chapter we have laid out a scheme by which an external supervisor cir-
cuit could indirectly guide synaptic learning solely through harnessing random
drift in a noisy network and sending fast excitatory signals to the learning net-
work. However it is still an open question whether such a process actually occurs
in biological networks. As mentioned previously there is good experimental ev-
idence for the types of bump states that could power the search process within
the supervisor circuit. But what of the stronger claim that the output of such a
supervisory circuit could influence network evolution through the injection of
modulatory excitation and inhibition?
In fact a pair of recent papers examining the avian song production system

raise suggest that just such a scheme may be involved in rapid learning and fine-
tuning of learnt songs. There are two elements to our conjecture which have
been observed in these studies:

. The imposition of random variation in the network which could then be
used as grist for a reinforcement learning-style selection process.
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. A greater structure to the degree of noise imposed, gated by the produced
behavior’s similarity to a desired behavior.

Both studies examine the role in learning of a basal ganglia nucleus called 
which is known to innervate the vocal motor pathway. The researchers discov-
ered that when  is silenced, the degree of variability in the song produced
by the learning bird is greatly reduced (Ölveczky et al, ). In addition there is
some evidence that the  signal guides song production in a more directed
way: eliciting a specific pattern of  activity could reliably lead to production
of an equally specific variation in the song (Kao et al, ). These results sug-
gest that  in birds or the basal ganglia in mammals may be the site of the
biological correlate of the supervisor circuit we have been discussing.
The one missing piece is the form of modulation used. Projections from

 are predominantly excitatory, terminating in  synapses on the mo-
tor pathway. This could account for the shift-based modulation discussed in this
chapter, but not for the gain modulation via balanced excitation and inhibition
postulated previously. However it has recently been suggested that  activ-
ity is correlated with a concomitant rise in inhibition within the target nucleus
(Kristofer Bouchard, personal communication), raising the possibility that a su-
pervisory circuit posessing only excitatory outputs could be capable of the full
range of modulation proposed in the more complicated networks of prior chap-
ters.
Introducing variability is one essential feature of the supervisor we have been

studying because it corresponds to exploration of the space of network parame-
ters. Another is modulation of that variability by reward. It will be interesting
to see if  is modulated by reward signals, such as dopamine, in a manner
consistent with the proposed scheme.



 

Connected Dots & Dangling Ellipses

O   of the preceding chapters, we have attempted to lay out
a coherent scheme by which a ‘controller’ circuit (whose biological analog

would be some high-level, planning-oriented portion of the brain such as pre-
frontal cortex) could influence the behavior of a lower-level network on short
time scales and in such a way as to lead to permanent changes.
The mechanism by which the controller exerts this influence, as discussed in

chapter  takes the form of gain- and shift-modulation, which we have demon-
strated are capable of eliciting a wide variety of network activity patterns. In
addition, experimental data has shown that this form of control can be realized
in biological systems, suggesting that its use in the manner we have proposed is
at least achievable, if not yet directly observed.
While the existence of this phenomenon is noteworthy, how it could be used

in a consistent manner in a realistic network is not immediately apparent. Thus
in chapter we examined its utility in a supervised learning context when applied
to the classical neural network task of function approximation. The combination
of external supervision through modulation with local synaptic changes through
Hebbian plasticity addressed a potential concern which arose from the demon-
strations of chapter : the necessity of continuing supervisory input throughout
performance of the task.
The introduction of local plasticity allowed learning to shift away from the

constructed, ‘black box’ supervisor, instead becoming intrinsic to the network
itself after a period of training. Thus the role of the supervisor became a transient
one, setting up the conditions for a learning that it did not directly control, and
from which it could completely remove itself once complete.
All the same, the amount of the task that was solved within the black box

was sizable, with the hand-built supervisor keeping track of shift and gain mod-
ulation values for the several hundred cells of the network, then using a com-
putationally intensive gradient descent algorithm to fine tune those values as it
minimized performance error in the task. Thus, one could fairly argue that the
‘hard’ problems of learning had simply been pushed back from learning at the
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synapses (where they are typically handled) to learning within this artificial su-
pervisor.
More concretely, while we had shown how an arbitrary control circuit could

affect a network to bring about a desired change in both behavior and connectiv-
ity, we provided no explanation for how such a circuit could be constructed, how
it would systematically manage its modulatory feedback to the network, or how
its search algorithm could be realistically implemented. The work of chapter 
attempts to address these issues and complete the loop from task to network to
control circuit and back again.
Our final supervisor consists of only a handful of cells with the same charac-

teristics as those in the network itself, and the imposing problem of differentially
sending modulatory input within that population was solved by decomposing
the problem into principal components—each corresponding to an individual
cell in the supervisory circuit—and allowing their connections to the network
to be set by a variant of the Generalized Hebbian learning rule. We have also
shown that by composing the controller circuit in this manner, the sub-problem
of optimizing the firing rates of the supervisory cells (thus indirectly optimizing
the modulatory input to the network) is simple enough that it can be accom-
plished even when guided by a random walk strategy tuned to a non-specific
reward signal.

   

While performance of the current -based supervisor is sufficient as a proof
of concept, it could be improved; albeit at the cost of adding complexity to the
model. As it stands, the feedback modulation to the network is either purely
excitatory or purely inhibitory on a cell-by-cell basis. This is in contrast to the
type of modulation used in chapters  and  in which each network cell received
both excitatory and inhibitory input simultaneously. The advantage of this dual-
input approach is that it allows for not only the kind of shift modulation used
by the  supervisor but also the form of gain modulation that can be achieved
through balanced input currents.
The fact that the supervision scheme performs adequately using just shift is

heartening, but it could surely do better were gain modulation at its disposal as
well. This could most trivially be achieved by doubling the number of cells in
the supervisory circuit, with one set responsible for excitatory feedback and the
other for inhibitory.
Gain modulation would be especially useful for approximating target func-

tions with high spatial-frequencies given the sharpening and broadening of the
input tuning curves that is possible through this mechanism. The  scheme
already has one method of dealing with high-frequency targets by taking ad-
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vantage of the supervisory cells corresponding to higher-order principal com-
ponents. However, the ability to modulate neighboring input units differently is
diminished if those cells’ receptive fields are so broad as to completely overlap.
Thus sharpening through gain modulation could make these high-order super-
visory cells more useful.
Beyond purely performance-oriented improvements, there is also the ques-

tion of economy. In the same way that gain modulation is only truly useful for
fitting steep variations in the target function (and thus is overkill for functions
lacking those rapid changes), the number of principal components needed to suc-
cessfully perform the task will also be dependent on the structure of the target.
Thus it would make sense to recruit the cells of the supervisory circuit as needed
rather than simply throwing a fixed number of them at the problem, leading to
resources being wasted in some cases and being insufficient in others. As a side
benefit, this approach could also lead to faster learning since by minimizing the
number of components necessary, it also minimizes the dimensions of the mod-
ulatory search space that must be traversed to solve the task.

   

The supervisory scheme just described is certainly an improvement in terms of
parsimony and biological plausibility when compared to the purely black box
approach of using an omniscient gradient descent algorithm and directly setting
shifts and gains for each cell independently. However, while we have reduced
the degree to which the supervisor relies on non-neural implementations, some
portions of its behavior are still unaccounted for.
Most prominently, the manner by which the rates of the cells in the super-

visory circuit are fine tuned during learning, and the source of the driving input
to maintain these rates, has not been identified. This is particularly critical since
‘solving’ the function approximation problem under this scheme collapses into
setting these rates.
Luckily, precisely the qualities that are required for this process—slow drift

within some space, gated by an external value (in our case approximation error)
and sustained activity—are the definitive characteristics of another circuit which
has received much attention from the neural modeling community: prefrontal
cortex. Currently the leading candidate as a locus for such behaviors as planning
and attending,  has a number of characteristics that make it well suited to a
the meta-task of supervising the supervisor during task-learning.
First, it has been shown that , like many other parts of the brain, is ca-

pable of maintaining stable patterns of activity for extended periods, considered
by some to be the analog for a form of working memory or at the least focused
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attention. This type of phenomenon is precisely what would be be required to
maintain the relative drives of the cells in our supervisory circuit over time.
In addition, a mechanism for these sustained activity states has been pro-

posed in recent theoretical work (Wang and Goldman-Rakic, ; Compte et
al., ; Seung et al., ). By setting connectivity patterns within a -like
network as a sort of topographic map—with ‘nearby’ nodes having strong excita-
tory connections, and more ‘distant’ ones having inhibitory couplings—one can
achieve stable representations within the activity pattern of the network. Once a
particular location within this ensemble is activated, a ‘bump’ of excitation will
spread to the most proximal cells, but this activity will remain localized due to
the inhibition passed to more distal cells.
In order to integrate such a mechanism into our scheme, one could imagine

that in addition to being connected to the other cells within this map, the cells in
this -like network would also send projections to the cells in our supervisory
network with synaptic couplings that would vary based on their position within
the map. Thus the location of the bump would correspond to one set of synaptic
drives delivered to the supervisory cells.
The second important characteristic of these bump attractor networks is

that once a bump has formed, it is subject to a degree of random drift due to
noise in the local spread of activation within the excitatory halo. While this is
generally considered a defect when used in working memory models (since it un-
dercuts the stability of the representation, allowing it to change despite the lack
of external justification for doing so), for our purposes this ‘bug’ becomes a ‘fea-
ture’. For the black box in our model was not merely responsible for maintaining
drive to the supervisory cells, but also for experimenting with their relative rates
in order to minimize error in the function approximation task. Thus, in our case,
the drift is not noise to be minimized but in fact provides a mechanism for ex-
ploring the modulation space of the network by randomly varying the pattern of
activity imposed on the network by the supervisory circuit.
This is why it is significant that, as demonstrated in chapter , the task-

learning process can proceed successfully when guided by a random walk super-
visory strategy. Thus one of these bump networks could potentially function as
a drop-in replacement for our more contrived, algorithmic black box. The one
missing piece complicating such a replacement is the lack of coupling between
task error, as our hand-built supervisor received, and the random drift of the
bump network. However this too is fairly easily dealt with, for another quality
intrinsic to  is reward-processing via dopamine signaling (Schultz, ).
If one were to make the speed of drift a function of task-related reward—

increasing when reward is low and the network is performing poorly, decreas-
ing to near zero when the network is performing near-optimally—no additional
modification would need to be made to this meta-supervisory system for it to
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be equivalent to the -based model proposed above. Since the speed of drift
is a function of network noise, this could easily be modulated as a function of
reward through a simple, global elevation or decrease in input from the circuit
managing the reward process.
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