
Joel on Software | http://www.joelonsoftware.com/articles/APIWar.html 13 June 2004

How Microsoft Lost the API War
By Joel Spolsky

Although there is some truth to the fact that Linux is a huge threat to Microsoft,
predictions of the Redmond company’s demise are, to say the least, premature.

Microsoft has an incredible amount of cash money in the bank and is still incredibly
profitable. It has a long way to fall. It could do everything wrong for a decade before it
started to be in remote danger, and you never know . . . they could reinvent themselves
as a shaved-ice company at the last minute. So don’t be so quick to write them off.
In the early s everyone thought  was completely over: mainframes were history!
Back then, Robert X. Cringely predicted that the era of the mainframe would end on
January ,  when all the applications written in  would seize up, and rather
than fix those applications, for which, allegedly, the source code had long since been
lost, everybody would rewrite those applications for client-server platforms.

Well, guess what. Mainframes are still with us, nothing happened on January , ,
and  reinvented itself as a big ol’ technology consulting company that also happens
to make cheap plastic telephones. So extrapolating from a few data points to the theory
that Microsoft is finished is really quite a severe exaggeration.

However, there is a less understood phenomenon which is going largely unnoticed:
Microsoft’s crown strategic jewel, the Windows , is lost. The cornerstone of Mi-
crosoft’s monopoly power and incredibly profitable Windows and Office franchises,
which account for virtually all of Microsoft’s income and covers up a huge array of
unprofitable or marginally profitable product lines, the Windows  is no longer of
much interest to developers. The goose that lays the golden eggs is not quite dead, but
it does have a terminal disease, one that nobody noticed yet.

Now that I’ve said that, allow me to apologize for the grandiloquence and pomposity
of that preceding paragraph. I think I’m starting to sound like those editorial writers in
the trade rags who go on and on about Microsoft’s strategic asset, the Windows . It’s
going to take me a few pages, here, to explain what I’m really talking about and justify
my arguments. Please don’t jump to any conclusions until I explain what I’m talking
about. This will be a long article. I need to explain what the Windows  is; I need to
demonstrate why it’s the most important strategic asset to Microsoft; I need to explain
how it was lost and what the implications of that are in the long term. And because I’m
talking about big trends, I need to exaggerate and generalize.

Developers, Developers, Developers, Developers

Remember the definition of an operating system? It’s the thing that manages a com-
puter’s resources so that application programs can run. People don’t really care much
about operating systems; they care about those application programs that the operating
system makes possible. Word Processors. Instant Messaging. Email. Accounts Payable.
Web sites with pictures of Paris Hilton. By itself, an operating system is not that useful.
People buy operating systems because of the useful applications that run on it. And there-
fore the most useful operating system is the one that has the most useful applications.

The logical conclusion of this is that if you’re trying to sell operating systems, the
most important thing to do is make software developers want to develop software for
your operating system. That’s why Steve Ballmer was jumping around the stage shouting
“Developers, developers, developers, developers.” It’s so important for Microsoft that the
only reason they don’t outright give away development tools for Windows is because
they don’t want to inadvertently cut off the oxygen to competitive development tools
vendors (well, those that are left) because having a variety of development tools available



http://www.joelonsoftware.com/articles/APIWar.html
http://www.google.com/froogle?q=ibm+cordless+telephone&btnG=Search+Froogle
http://www.ntk.net/ballmer/mirrors.html


for their platform makes it that much more attractive to developers. But they really want
to give away the development tools. Through their Empower  program you can
get five complete sets of  Universal (otherwise known as “basically every Microsoft
product except Flight Simulator”) for about . Command line compilers for the .
languages are included with the free . runtime . . . also free. The ++ compiler is
now free. Anything to encourage developers to build for the . platform, and holding
just short of wiping out companies like Borland.

Why Apple and Sun Can’t Sell Computers
Sidebar
What is this “” thing?
If you’re writing a program, say, a
word processor, and you want to dis-
play a menu, or write a file, you
have to ask the operating system to
do it for you, using a very specific
set of function calls which are differ-
ent on every operating system. These
function calls are called the api: it’s
the interface that an operating sys-
tem, like Windows, provides to appli-
cation developers, like the program-
mers building word processors and
spreadsheets and whatnot. It’s a set
of thousands and thousands of de-
tailed and fussy functions and sub-
routines that programmers can use,
which cause the operating system
to do interesting things like display
a menu, read and write files, and
more esoteric things like find out
how to spell out a given date in
Serbian, or extremely complex things
like display a web page in a win-
dow. If your program uses the api
calls for Windows, it’s not going to
work on Linux, which has different
api calls. Sometimes they do approx-
imately the same thing. That’s one
important reason Windows software
doesn’t run on Linux. If you wanted
to get a Windows program to run
under Linux, you’d have to reimple-
ment the entire Windows api, which
consists of thousands of complicated
functions: this is almost as much
work as implementing Windows it-
self, something which took Microsoft
thousands of person-years. And if
you make one tiny mistake or leave
out one function that an application
needs, that application will crash.

Well, of course, that’s a little bit silly: of course Apple and Sun can sell computers, but
not to the two most lucrative markets for computers, namely, the corporate desktop and
the home computer. Apple is still down there in the very low single digits of market
share and the only people with Suns on their desktops are at Sun. (Please understand
that I’m talking about large trends here, and therefore when I say things like “nobody”
I really mean “fewer than ,, people,” and so on and so forth.)

Why? Because Apple and Sun computers don’t run Windows programs, or, if they
do, it’s in some kind of expensive emulation mode that doesn’t work so great. Remem-
ber, people buy computers for the applications that they run, and there’s so much more
great desktop software available for Windows than Mac that it’s very hard to be a Mac
user.

And that’s why the Windows  is such an important asset to Microsoft.
(I know, I know, at this point the .% of the world that uses Macintoshes are

warming up their email programs to send me a scathing letter about how much they
love their Macs. Once again, I’m speaking in large trends and generalizing, so don’t
waste your time. I know you love your Mac. I know it runs everything you need. I love
you, you’re a Pepper, but you’re only .% of the world, so this article isn’t about you.)

The Two Forces at Microsoft

There are two opposing forces inside Microsoft, which I will refer to, somewhat tongue-
in-cheek, as The Raymond Chen Camp and The  Magazine Camp.

Raymond Chen is a developer on the Windows team at Microsoft. He’s been there
since , and his weblog The Old New Thing is chock-full of detailed technical
stories about why certain things are the way they are in Windows, even silly things,
which turn out to have very good reasons.

The most impressive things to read on Raymond’s weblog are the stories of the
incredible efforts the Windows team has made over the years to support backwards
compatibility:

Look at the scenario from the customer’s standpoint. You bought programs
X, Y and Z. You then upgraded to Windows . Your computer now
crashes randomly, and program Z doesn’t work at all. You’re going to tell
your friends, “Don’t upgrade to Windows . It crashes randomly, and
it’s not compatible with program Z.” Are you going to debug your sys-
tem to determine that program X is causing the crashes, and that program
Z doesn’t work because it is using undocumented window messages? Of
course not. You’re going to return the Windows  box for a refund. (You
bought programs X, Y, and Z some months ago. The -day return policy
no longer applies to them. The only thing you can return is Windows .)

I first heard about this from one of the developers of the hit game SimCity, who
told me that there was a critical bug in his application: it used memory right after
freeing it, a major no-no that happened to work OK on  but would not work under



http://members.microsoft.com/partner/competency/isvcomp/empower/default.aspx
http://msdn.microsoft.com/visualc/vctoolkit2003/
http://www.winehq.com/
http://www.winehq.com/
http://weblogs.asp.net/oldnewthing/
http://weblogs.asp.net/oldnewthing/archive/2003/12/23/45481.aspx
http://weblogs.asp.net/oldnewthing/archive/2003/10/15/55296.aspx


Windows where memory that is freed is likely to be snatched up by another running
application right away. The testers on the Windows team were going through various
popular applications, testing them to make sure they worked OK, but SimCity kept
crashing. They reported this to the Windows developers, who disassembled SimCity,
stepped through it in a debugger, found the bug, and added special code that checked if
SimCity was running, and if it did, ran the memory allocator in a special mode in which you
could still use memory after freeing it.

This was not an unusual case. The Windows testing team is huge and one of their
most important responsibilities is guaranteeing that everyone can safely upgrade their
operating system, no matter what applications they have installed, and those applications
will continue to run, even if those applications do bad things or use undocumented
functions or rely on buggy behavior that happens to be buggy in Windows n but is no
longer buggy in Windows n+. In fact if you poke around in the AppCompatibility sec-
tion of your registry you’ll see a whole list of applications that Windows treats specially,
emulating various old bugs and quirky behaviors so they’ll continue to work. Raymond
Chen writes, “I get particularly furious when people accuse Microsoft of maliciously
breaking applications during OS upgrades. If any application failed to run on Windows
, I took it as a personal failure. I spent many sleepless nights fixing bugs in third-party
programs just so they could keep running on Windows .”

A lot of developers and engineers don’t agree with this way of working. If the
application did something bad, or relied on some undocumented behavior, they think,
it should just break when the OS gets upgraded. The developers of the Macintosh OS
at Apple have always been in this camp. It’s why so few applications from the early
days of the Macintosh still work. For example, a lot of developers used to try to make
their Macintosh applications run faster by copying pointers out of the jump table and
calling them directly instead of using the interrupt feature of the processor like they
were supposed to. Even though somewhere in Inside Macintosh, Apple’s official Bible of
Macintosh programming, there was a tech note saying “you can’t do this,” they did it,
and it worked, and their programs ran faster . . . until the next version of the OS came
out and they didn’t run at all. If the company that made the application went out of
business (and most of them did), well, tough luck, bubby.

To contrast, I’ve got  applications that I wrote in  for the very original 
 that still run flawlessly, thanks to the Raymond Chen Camp at Microsoft. I know,
it’s not just Raymond, of course: it’s the whole modus operandi of the core Windows 
team. But Raymond has publicized it the most through his excellent website The Old
New Thing so I’ll name it after him.

That’s one camp. The other camp is what I’m going to call the  Magazine
camp, which I will name after the developer’s magazine full of exciting articles about
all the different ways you can shoot yourself in the foot by using esoteric combina-
tions of Microsoft products in your own software. The  Magazine Camp is always
trying to convince you to use new and complicated external technology like +,
, , Microsoft Office, Internet Explorer and its components, , DirectX
(the very latest version, please), Windows Media Player, and Sharepoint . . . Sharepoint!
which nobody has; a veritable panoply of external dependencies each one of which is going
to be a huge headache when you ship your application to a paying customer and it
doesn’t work right. The technical name for this is  Hell. It works here: why doesn’t
it work there?

The Raymond Chen Camp believes in making things easy for developers by making
it easy to write once and run anywhere (well, on any Windows box). The  Maga-
zine Camp believes in making things easy for developers by giving them really powerful
chunks of code which they can leverage, if they are willing to pay the price of incredibly
complicated deployment and installation headaches, not to mention the huge learning
curve. The Raymond Chen camp is all about consolidation. Please, don’t make things



http://weblogs.asp.net/oldnewthing/archive/2003/10/15/55296.aspx
http://weblogs.asp.net/oldnewthing/
http://weblogs.asp.net/oldnewthing/


any worse, let’s just keep making what we already have still work. The  Magazine
Camp needs to keep churning out new gigantic pieces of technology that nobody can
keep up with.

Here’s why this matters.

Microsoft Lost the Backwards Compatibility Religion

Inside Microsoft, the  Magazine Camp has won the battle.
The first big win was making Visual Basic. not backwards-compatible with VB

.. This was literally the first time in living memory that when you bought an upgrade
to a Microsoft product, your old data (i.e. the code you had written in ) could not be
imported perfectly and silently. It was the first time a Microsoft upgrade did not respect
the work that users did using the previous version of a product.

And the sky didn’t seem to fall, not inside Microsoft.  developers were up in
arms, but they were disappearing anyway, because most of them were corporate devel-
opers who were migrating to web development anyway. The real long term damage was
hidden.

With this major victory under their belts, the  Magazine Camp took over.
Suddenly it was OK to change things.  . came out with a different threading model
that broke some old applications. I was shocked to discover that our customers with
Windows Server  were having trouble running FogBugz. Then . . was not
perfectly backwards compatible with .. And now that the cat was out of the bag, the
OS team got into the spirit and decided that instead of adding features to the Windows
, they were going to completely replace it. Instead of Win, we are told, we should
now start getting ready for WinFX: the next generation Windows . All different.
Based on . with managed code. . Avalon. Yes, vastly superior to Win, I
admit it. But not an upgrade: a break with the past.

Outside developers, who were never particularly happy with the complexity of Win-
dows development, have defected from the Microsoft platform en-masse and are now de-
veloping for the web. Paul Graham, who created Yahoo! Stores in the early days of the
dotcom boom, summarized it eloquently: “There is all the more reason for startups to
write Web-based software now, because writing desktop software has become a lot less
fun. If you want to write desktop software now you do it on Microsoft’s terms, calling
their s and working around their buggy OS. And if you manage to write something
that takes off, you may find that you were merely doing market research for Microsoft.”

Microsoft got big enough, with too many developers, and they were too addicted
to upgrade revenues, so they suddenly decided that reinventing everything was not too
big a project. Heck, we can do it twice. The old Microsoft, the Microsoft of Raymond
Chen, might have implemented things like Avalon, the new graphics system, as a series
of s that can run on any version of Windows and which could be bundled with
applications that need them. There’s no technical reason not to do this. But Microsoft
needs to give you a reason to buy Longhorn, and what they’re trying to pull off is a
sea change, similar to the sea change that occurred when Windows replaced . The
trouble is that Longhorn is not a very big advance over Windows ; not nearly as big
as Windows was over . It probably won’t be compelling enough to get people to
buy all new computers and applications like they did for Windows. Well, maybe it will,
Microsoft certainly needs it to be, but what I’ve seen so far is not very convincing. A
lot of the bets Microsoft made are the wrong ones. For example, WinFS, advertised as a
way to make searching work by making the file system be a relational database, ignores
the fact that the real way to make searching work is by making searching work. Don’t make
me type metadata for all my files that I can search using a query language. Just do me
a favor and search the damned hard drive, quickly, for the string I typed, using full-text indexes
and other technologies that were boring in .



http://www.gartner.com/DisplayDocument?doc_cd=118261
http://www.paulgraham.com/road.html
http://weblog.infoworld.com/udell/2004/06/02.html#a1012


Automatic Transmissions Win the Day

Don’t get me wrong . . . I think . is a great development environment and Avalon
with  is a tremendous advance over the old way of writing  apps for Windows.
The biggest advantage of . is the fact that it has automatic memory management.

A lot of us thought in the s that the big battle would be between procedural
and object oriented programming, and we thought that object oriented programming
would provide a big boost in programmer productivity. I thought that, too. Some peo-
ple still think that. It turns out we were wrong. Object oriented programming is handy
dandy, but it’s not really the productivity booster that was promised. The real significant
productivity advance we’ve had in programming has been from languages which manage
memory for you automatically. It can be with reference counting or garbage collection;
it can be Java, Lisp, Visual Basic (even .), Smalltalk, or any of a number of scripting lan-
guages. If your programming language allows you to grab a chunk of memory without
thinking about how it’s going to be released when you’re done with it, you’re using a
managed-memory language, and you are going to be much more efficient than someone
using a language in which you have to explicitly manage memory. Whenever you hear
someone bragging about how productive their language is, they’re probably getting most
of that productivity from the automated memory management, even if they misattribute
it. Sidebar

Why does automatic mem-
ory management make you so
much more productive?
1) Because you can write f(g(x)) with-
out worrying about how to free the
return value from g, which means
you can use functions which return
interesting complex data types and
functions which transform interest-
ing complex data types, in turn allow-
ing you to work at a higher level of
abstraction.

2) Because you don’t have to spend
any time writing code to free mem-
ory or tracking down memory leaks.

3) Because you don’t have to care-
fully coordinate the exit points from
your functions to make sure things
are cleaned up properly.

Racing car aficionados will probably send me hate mail for this, but my experience
has been that there is only one case, in normal driving, where a good automatic transmis-
sion is inferior to a manual transmission. Similarly in software development: in almost
every case, automatic memory management is superior to manual memory management
and results in far greater programmer productivity.

If you were developing desktop applications in the early years of Windows, Microsoft
offered you two ways to do it: writing C code which calls the Windows  directly and
managing your own memory, or using Visual Basic and getting your memory managed
for you. These are the two development environments I have used the most, personally,
over the last  years or so, and I know them inside-out, and my experience has been
that Visual Basic is significantly more productive. Often I’ve written the same code, once
in ++ calling the Windows  and once in Visual Basic, and ++ always took three
or four times as much work. Why? Memory management. The easiest way to see why
is to look at the documentation for any Windows  function that needs to return a
string. Look closely at how much discussion there is around the concept of who allocates
the memory for the string, and how you negotiate how much memory will be needed.
Typically, you have to call the function twice—on the first call, you tell it that you’ve
allocated zero bytes, and it fails with a “not enough memory allocated” message and
conveniently also tells you how much memory you need to allocate. That’s if you’re
lucky enough not to be calling a function which returns a list of strings or a whole
variable-length structure. In any case, simple operations like opening a file, writing a
string, and closing it using the raw Windows  can take a page of code. In Visual
Basic similar operations can take three lines.

So, you’ve got these two programming worlds. Everyone has pretty much decided
that the world of managed code is far superior to the world of unmanaged code. Visual
Basic was (and probably remains) the number one bestselling language product of all
time and developers preferred it over C or ++ for Windows development, although
the fact that “Basic” was in the name of the product made hardcore programmers shun it
even though it was a fairly modern language with a handful of object-oriented features
and very little leftover gunk (line numbers and the  statement having gone the way
of the hula hoop). The other problem with VB was that deployment required shipping
a VB runtime, which was a big deal for shareware distributed over modems, and, worse,
let other programmers see that your application was developed in (the shame!) Visual





Basic.

One Runtime To Rule Them All

And along came .. This was a grand project, the super-duper unifying project to
clean up the whole mess once and for all. It would have memory management, of
course. It would still have Visual Basic, but it would gain a new language, one which is
in spirit virtually the same as Visual Basic but with the C-like syntax of curly braces and
semicolons. And best of all, the new Visual Basic/C hybrid would be called Visual C#,
so you would not have to tell anyone you were a “Basic” programmer any more. All
those horrid Windows functions with their tails and hooks and backwards-compatibility
bugs and impossible-to-figure-out string-returning semantics would be wiped out, re-
placed by a single clean object oriented interface that only has one kind of string. One
runtime to rule them all. It was beautiful. And they pulled it off, technically. . is a
great programming environment that manages your memory and has a rich, complete,
and consistent interface to the operating system and a rich, super complete, and elegant
object library for basic operations.

And yet, people aren’t really using . much.
Oh sure, some of them are.
But the idea of unifying the mess of Visual Basic and Windows  programming

by creating a completely new, ground-up programming environment with not one, not two,
but three languages (or are there four?) is sort of like the idea of getting two quarreling
kids to stop arguing by shouting “shut up!” louder than either of them. It only works
on . In real life when you shout “shut up!” to two people arguing loudly you just
create a louder three-way argument.

(By the way, for those of you who follow the arcane but politically-charged world
of blog syndication feed formats, you can see the same thing happening over there. 
became fragmented with several different versions, inaccurate specs and lots of political
fighting, and the attempt to clean everything up by creating yet another format called
Atom has resulted in several different versions of  plus one version of Atom, inac-
curate specs and lots of political fighting. When you try to unify two opposing forces
by creating a third alternative, you just end up with three opposing forces. You haven’t
unified anything and you haven’t really fixed anything.)

So now instead of . unifying and simplifying, we have a big -way mess, with
everybody trying to figure out which development strategy to use and whether they can
afford to port their existing applications to ..

No matter how consistent Microsoft is in their marketing message (“just use .—
trust us!”), most of their customers are still using C, ++, Visual Basic ., and classic
, not to mention all the other development tools from other companies. And the
ones that are using . are using . to develop web applications, which run on
a Windows server but don’t require Windows clients, which is a key point I’ll talk about
more when I talk about the web.

Oh, Wait, There’s More Coming!

Now Microsoft has so many developers cranking away that it’s not enough to reinvent
the entire Windows : they have to reinvent it twice. At last year’s  they prean-
nounced the next major version of their operating system, codenamed Longhorn, which
will contain, among other things, a completely new user interface , codenamed
Avalon, rebuilt from the ground up to take advantage of modern computers’ fast display
adapters and realtime  rendering. And if you’re developing a Windows  app to-
day using Microsoft’s “official” latest-and-greatest Windows programming environment,
WinForms, you’re going to have to start over again in two years to support Longhorn



http://msdn.microsoft.com/library/default.asp?url=/library/en-us/winui/WinUI/WindowsUserInterface/Resources/VersionInformation/VersionInformationReference/VersionInformationFunctions/GetFileVersionInfo.asp


and Avalon. Which explains why WinForms is completely stillborn. Hope you haven’t
invested too much in it. Jon Udell found a slide from Microsoft labelled “How Do I
Pick Between Windows Forms and Avalon?” and asks, “Why do I have to pick between
Windows Forms and Avalon?” A good question, and one to which he finds no great
answer.

So you’ve got the Windows , you’ve got VB, and now you’ve got ., in
several language flavors, and don’t get too attached to any of that, because we’re making
Avalon, you see, which will only run on the newest Microsoft operating system, which
nobody will have for a loooong time. And personally I still haven’t had time to learn
. very deeply, and we haven’t ported Fog Creek’s two applications from classic 
and Visual Basic . to . because there’s no return on investment for us. None. It’s just
Fire and Motion as far as I’m concerned: Microsoft would love for me to stop adding
new features to our bug tracking software and content management software and instead
waste a few months porting it to another programming environment, something which
will not benefit a single customer and therefore will not gain us one additional sale, and
therefore which is a complete waste of several months, which is great for Microsoft,
because they have content management software and bug tracking software, too, so
they’d like nothing better than for me to waste time spinning cycles catching up with
the flavor du jour, and then waste another year or two doing an Avalon version, too,
while they add features to their own competitive software. Riiiight.

No developer with a day job has time to keep up with all the new development tools
coming out of Redmond, if only because there are too many dang employees at Microsoft
making development tools!

It’s Not 

Microsoft grew up during the s and s, when the growth in personal computers
was so dramatic that every year there were more new computers sold than the entire
installed base. That meant that if you made a product that only worked on new com-
puters, within a year or two it could take over the world even if nobody switched to
your product. That was one of the reasons Word and Excel displaced WordPerfect and
Lotus so thoroughly: Microsoft just waited for the next big wave of hardware upgrades
and sold Windows, Word and Excel to corporations buying their next round of desktop
computers (in some cases their first round). So in many ways Microsoft never needed
to learn how to get an installed base to switch from product N to product +. When
people get new computers, they’re happy to get all the latest Microsoft stuff on the new
computer, but they’re far less likely to upgrade. This didn’t matter when the  industry
was growing like wildfire, but now that the world is saturated with s most of which
are Just Fine, Thank You, Microsoft is suddenly realizing that it takes much longer for
the latest thing to get out there. When they tried to “End Of Life” Windows , it
turned out there were still so many people using it they had to promise to support that
old creaking grandma for a few more years.

Unfortunately, these Brave New Strategies, things like . and Longhorn and
Avalon, trying to create a new  to lock people into, can’t work very well if every-
body is still using their good-enough computers from . Even if Longhorn ships
when it’s supposed to, in , which I don’t believe for a minute, it will take a couple
of years before enough people have it that it’s even worth considering as a develop-
ment platform. Developers, developers, developers, and developers are not buying into
Microsoft’s multiple-personality-disordered suggestions for how we should develop soft-
ware.



http://weblog.infoworld.com/udell/2004/06/09.html#a1019
file:fog0000000339.html
http://www.windows-help.net/microsoft/98-lifecycle.html


Enter the Web

I’m not sure how I managed to get this far without mentioning the Web. Every devel-
oper has a choice to make when they plan a new software application: they can build
it for the web or they can build a “rich client” application that runs on s. The basic
pros and cons are simple: Web applications are easier to deploy, while rich clients offer
faster response time enabling much more interesting user interfaces.

Web Applications are easier to deploy because there’s no installation involved. In-
stalling a web application means typing a  in the address bar. Today I installed
Google’s new email application by typing Alt+D, gmail, Ctrl+Enter. There are far fewer
compatibility problems and problems coexisting with other software. Every user of your
product is using the same version so you never have to support a mix of old versions.
You can use any programming environment you want because you only have to get it
up and running on your own server. Your application is automatically available at virtu-
ally every reasonable computer on the planet. Your customers’ data, too, is automatically
available at virtually every reasonable computer on the planet.

But there’s a price to pay in the smoothness of the user interface. Here are a few
examples of things you can’t really do well in a web application:

. Create a fast drawing program

. Build a real-time spell checker with wavy red underlines

. Warn users that they are going to lose their work if they hit the close box of the
browser

. Update a small part of the display based on a change that the user makes without
a full roundtrip to the server

. Create a fast keyboard-driven interface that doesn’t require the mouse

. Let people continue working when they are not connected to the Internet

These are not all big issues. Some of them will be solved very soon by witty Javascript
developers. Two new web applications, Gmail and Oddpost, both email apps, do a really
decent job of working around or completely solving some of these issues. And users
don’t seem to care about the little UI glitches and slowness of web interfaces. Almost all
the normal people I know are perfectly happy with web-based email, for some reason,
no matter how much I try to convince them that the rich client is, uh, richer.

So the Web user interface is about % there, and even without new web browsers
we can probably get % there. This is Good Enough for most people and it’s certainly
good enough for developers, who have voted to develop almost every significant new
application as a web application.

Which means, suddenly, Microsoft’s  doesn’t matter so much. Web applications
don’t require Windows.

It’s not that Microsoft didn’t notice this was happening. Of course they did, and
when the implications became clear, they slammed on the brakes. Promising new tech-
nologies like s and  were stopped in their tracks. The Internet Explorer team
seems to have disappeared; they have been completely missing in action for several years.
There’s no way Microsoft is going to allow  to get any better than it already is:
it’s just too dangerous to their core business, the rich client. The big meme at Microsoft
these days is: “Microsoft is betting the company on the rich client.” You’ll see that somewhere
in every slide presentation about Longhorn. Joe Beda, from the Avalon team, says that
“Avalon, and Longhorn in general, is Microsoft’s stake in the ground, saying that we be-
lieve power on your desktop, locally sitting there doing cool stuff, is here to stay. We’re



https://gmail.google.com/
http://www.oddpost.com/
http://msdn.microsoft.com/workshop/author/hta/overview/htaoverview.asp
http://channel9.msdn.com/ShowPost.aspx?PostID=948


investing on the desktop, we think it’s a good place to be, and we hope we’re going to
start a wave of excitement . . . ”

The trouble is: it’s too late.

I’m a Little Bit Sad About This, Myself

I’m actually a little bit sad about this, myself. To me the Web is great but Web-based
applications with their sucky, high-latency, inconsistent user interfaces are a huge step
backwards in daily usability. I love my rich client applications and would go nuts if I had
to use web versions of the applications I use daily: Visual Studio, CityDesk, Outlook,
Corel PhotoPaint, QuickBooks. But that’s what developers are going to give us. No-
body (by which, again, I mean “fewer than ,, people”) wants to develop for
the Windows  any more. Venture Capitalists won’t invest in Windows applications
because they’re so afraid of competition from Microsoft. And most users don’t seem to
care about crappy Web UIs as much as I do.

And here’s the clincher: I noticed (and confirmed this with a recruiter friend) that
Windows  programmers here in New York City who know ++ and  pro-
gramming earn about , a year, while typical Web programmers using managed
code languages (Java, , Perl, even .) earn about , a year. That’s a huge
difference, and when I talked to some friends from Microsoft Consulting Services about
this they admitted that Microsoft had lost a whole generation of developers. The reason
it takes , to hire someone with  experience is because nobody bothered
learning  programming in the last eight years or so, so you have to find somebody
really senior, usually they’re already in management, and convince them to take a job as a
grunt programmer, dealing with (God help me) marshalling and monikers and apartment
threading and aggregates and tearoffs and a million other things that, basically, only Don
Box ever understood, and even Don Box can’t bear to look at them any more.

Much as I hate to say it, a huge chunk of developers have long since moved to the
web and refuse to move back. Most . developers are . developers, developing
for Microsoft’s web server. . is brilliant; I’ve been working with web development
for ten years and it’s really just a generation ahead of everything out there. But it’s a server
technology, so clients can use any kind of desktop they want. And it runs pretty well
under Linux using Mono.

None of this bodes well for Microsoft and the profits it enjoyed thanks to its 
power. The new  is , and the new winners in the application development
marketplace will be the people who can make  sing.



http://news.com.com/2100-1046_3-5148148.html
http://www.go-mono.com/

