Daring Fireball | [hitp://daringfireball.net/2004/06/dashboard_vs_konfabulator 30 June 2004

Dashboard vs. Konfabulator
by John Gruber

Asliding puzzle. A calculator. A clock. A little notepad. Tiny little applets—Ilittle
pieces of software that are something less than full applications themselves, but
which run alongside real apps and are easily accessed at any time.

Obviously, Apple ripped off the idea for Dashboard. Stolen wholesale, without even
the decency to mention where they took the original idea.

Which, of course, would be the desk accessories from the original 1984 Macintosh—
conceived by Bud Tribble and engineered (mostly) by Andy Hertzfeld. Here’s Hertzteld
on the origin of desk accessories:

Bud Tribble was usually on an even keel, but one afternoon in the fall
of 1981 he came into my office, unusually excited. “You know, I've been
thinking about it. Even if we can only run one major application at a time,
there’s no reason that we can’t also have some little miniature applications
running in their own windows at the same time.”

That sounded intriguing to me. “What kind of little programs? How are
they different?”, I wondered.

Bud smiled. “You'd want tiny apps that were good at a specific, limited
function that complements the main application. Like a little calculator, for
example, that looked like a real calculator. Or maybe an alarm clock, or a
notepad for jotting down text. Since the entire screen is supposed to be a
metaphorical desktop, the little programs are desk ornaments, adorning the
desktop with useful features.”

The post-wwDC peanut gallery is atwitter with the idea that Tiger’s Dashboard is a bla-
tant rip-oft of Konfabulator. You can’t read anything about Dashboard without hearing
that it’s a Konfabulator rip-off.

Bullshit. Dashboard is not a rip-off of Konfabulator. Yes, they are doing very much the
same thing. But what it is that they’re doing was not an original idea to Konfabulator.
The scope of a “widget” is very much the modern-day equivalent of a desk accessory.

What is original to Konfabulator? That its widgets are based on a scripting language?
That’s not original. There are a slew of other scripting runtimes that allow you to create
little-applets-in-windows. E.g. on the old Mac OS, there was OneClickl

According to the Konfabulator web site:

‘What sets Konfabulator apart from other scripting applications is that it
takes full advantage of Apple’s Quartz rendering. This allows Widgets to
blend fluidly into your desktop without the constraints of traditional win-
dow borders. Toss in some sliding and fading, and these little guys are right
at home in Mac OS X.

That sounds right—the most striking thing about Konfabulator is that its default widgets
look cool. Anti-aliased type. Round corners. Transparency. In short, theyre clearly the
work of a talented artist, that being Arlo Rose, who, before co-creating Konfabulator,
had in fact worked as a human interface designer for Apple|in the 9os, and then went
on to co-create the Kaleidoscope theming hack for the old Mac OS.

The crux is that what makes Konfabulator stand out is that its widgets look “right at
home in Mac OS X”. But is it any wonder that Apple’s Dashboard gadgets look “right
at home” on Mac OS X, too?

http://daringfireball.net/2004/06/dashboard_vs_konfabulator
http://www.apple.com/macosx/tiger/dashboard.html
http://www.folklore.org/StoryView.py?project=Macintosh&story=Desk_Ornaments.txt
http://www.folklore.org/StoryView.py?project=Macintosh&story=Desk_Ornaments.txt
http://konfabulator.com/
http://www.westcodesoft.com/oneclick/oc2/
http://konfabulator.com/info/
http://groups.google.com/groups?q=arlo+rose&hl=en&lr=&ie=UTF-8&selm=arlo-1809972347570001%40arlo.vip.best.com&rnum=8
http://www.kaleidoscope.net/

Nomenclatural note

Konfabulator calls its applets “widgets”. Apple’s Dashboard developer docu-
mentation refers to its applets as “gadgets”. However, at the wwDCc keynote
and at the Tiger Preview section of Apple.com, Apple refers to Dashboard’s
applets as “widgets”. Until this is clarified, I'll use “widgets” to refer to
Konfabulator’s dinguses; and “gadgets” for Dashboard’s.

It’s more than a little reminiscent of the supposed “controversy” over Panther’s greatly-
improved (Command-Tab switcher, wherein the fact that it (the Panther switcher) vi-
sually resembled Proteron’s Liteswitch X switching utility caused a bunch of knickers
to get knotted. Most infamously, Proteron developer Sam Caughron posted an “open
memo|” wherein he took the position of victim—that he was an innovator done wrong
by Apple.

But the functionality of Liteswitch X—using keyboard shortcuts to cycle through
running apps—is over 20 years old, and present in every major desktop OS for the last
decade. The argument that Apple had “ripped oft” Proteron more or less hinged in
the idea that the visual resemblence between the new built-in Panther switcher and
Liteswitch X couldn’t be a coincidence. Of course it wasn’t coincidence—but that
doesn’t mean it was a “rip-oft”. I wrote in October:

Part of Caughron’s argument is that Panther’s implementation is “a near
pixel duplication of [...] LiteSwitch X”—meaning that they look the same.
Proteron did a fine job designing how LiteSwitch X looks, but it is not a
novel design—it looks good because it looks like something designed by
Apple. Is it any surprise that Apple’s new switcher does too?

Also similar to the command-tab/Liteswitch X hubbub is that the consternation
isn’t coming from the developer community, but rather from the peanut gallery of non-
developers. Mac developers are not up-in-arms about Dashboard; in fact, the 9 a.m.
Dashboard session Tuesday morning at wwbc filled up so quickly that they had to turn
people away, long before the session started. (Part of this is excitement over Dashboard
itself; part is that there’s a contest for the best gadgets developed this week at wwbpc,
with the prizes being a 15" PowerBook and a 40 GB iPod.)

Look Under the Hood

The idea, repeated ad nauseum in the initial reaction to Dashboard, is that Apple should
have done the “right thing”, where “right thing” means “bought the rights to Konfab-
ulator instead of implementing Dashboard on their own”.

But this implies that Dashboard is an under-the-hood equivalent to Konfabulator.
They both use JavaScript, right?

Think again. Dashboard, from a how-it-works perspective, is very much different
than Konfabulator.

Konfabulator is a self-contained JavaScript runtime engine, using its own JavaScript
interpretter. (I suspect it’s based on one of the various open source JavaScript imple-
mentations, but I see no credit or reference to such on the Konfabulator web site or in
their documentation. If anyone knows, please let me know.) Konfabulator Ul layouts
are specified in a custom XML format. L.e.:

Konfabulator = (Custom xML format) + (Custom JavaScript engine)

Dashboard, on the other hand, is based on WebCore, the underlying open source
layout and scripting engine behind Safari. Dashboard gadgets are indeed scripted using
JavaScript, the same language used by Konfabulator, but Dashboard uses the JavaScript
engine that’s built into the system. And for UI layout, Dashboard gadgets are specified
using HTML and css—using the same rendering engine as Safari.

http://www.apple.com/macosx/tiger/dashboard.html
http://daringfireball.net/2003/10/commandtab
http://www.proteron.com/liteswitchx/openmemo.php
http://www.proteron.com/liteswitchx/openmemo.php
http://daringfireball.net/2003/10/commandtab

Dave Hyatt writes:

I wanted to blog briefly to clear up what the widgets actually are written
in. They are Web pages, plain and simple (with extra features thrown in
for added measure). Apple’s own web site says “build your own widgets
using the JavaScript language”, but that’s sort of misleading. The widgets
are HTML+css+Js. They are not some js-only thing.

In other words, each widget is just a web page, and so you have the
full power of WebKit behind each one... css2, pom2, Js, HTML, XML~
HttpRequest, Flash, QuickTime, Java, etc. I'll have a lot more to say later
on, but I thought it important to clear that up right up front, since a lot of
people were asking me about it in email and such.

Do you see how huge this is? How it opens the door to gadget development to anyone
with web design experience? Indeed, I've read the preliminary Dashboard developer
documentation (generously provided by a source attending wwDC), and it is outstanding
from the perspective of making gadgets easy-to-create.

The idea that Dashboard is derivative because it’s scripted via JavaScript is missing
the point. Dashboard isn’t using JavaScript just to use JavaScript—it’s using JavaScript
because Dashboard gadgets are little floating Web Kit views.

Plus, Dashboard gadgets are further extensible using Cocoa. You don’t need to use
Cocoa—tully functional gadgets can be made using nothing more than HTML, CSs, and
JavaScript—but the option to use Cocoa is there for doing things JavaScript alone can’t
do.

Thus, Dashboard is clearly an extension of Mac OS X system-level technologies:
‘Web Kit for layout and scripting; Exposé for the Dashboard window layer; and Cocoa
for advanced functionality. Dashboard is the result of advanced Mac OS X technology
in action.

Konfabulator, on the other hand, was designed from the start with platform porta-
bility in mind. (A port to Windows was announced back in December.)

That’s not to say Konfabulator widgets can’t use Mac-specific features; e.g. the ability
to call AppleScripts. But in terms of the underlying runtime engine, none of it is based
on Mac OS X-specific technologies.

Yes, no argument about it, Dashboard is a Konfabulator-killer. Their gadgets and
widgets are serving the same exact purpose. Le., the answer to the question What do
they do? is the same. But the answer to the question How are they doing it? is completely
different.

To assume that Apple started with the idea of putting Konfabulator out of business
for spite is to ignore the more obvious reason why Apple didn’t buy out Konfabulator:
they had something completely different in mind engineering-wise.

Do you see how it’s entirely plausible that Apple’s decision to base Dashboard on
‘Web Kit and Cocoa was based on purely technical reasons? Konfabulator isn’t a product—
it’s a platform. Konfabulator itself does nothing other than provide an environment and
API for widgets.

Adding a new platform layer to the system is a serious decision and commitment.
If you're still willing to argue that Apple should have bought Konfabulator as the basis
for Dashboard, you’re implicitly arguing that Apple should be more concerned about
being nice to third-party developers than they are about the quality of the engineering
undergirding their platform.

Konfabulator is not a lightweight or small-footprint environment—every Konfabu-
lator widgets runs as a separate process, with its own runtime environment in memory.
Most Konfabulator widgets use more memory than typical full-blown Mac OS X ap-
plications. Not just Konfabulator as a whole—but each widget. Install it, fire up Process

http://weblogs.mozillazine.org/hyatt/archives/2004_06.html#005876
http://about-cnet.com.com/2100-1046_3-5126248.html

Viewer, and see for yourself. (Ironically, the Konfabulator “cpu Portal” widget seems to
leak memory.)

For all of the armchair critics who claim to know that Apple “should have” bought
Konfabulator to serve as the basis for Dashboard, I ask:

* Have you used Konfabulator? If so, have you measured its memory consumption?

* Do you think Apple’s OS engineers should be concerned about performance and
resource consumption?

* Do you think you know more about performance and resource allocation than
Apple’s engineers?

* Do you believe reasonable engineering opinions can be drawn by looking at
screenshots?

* Do you realize how insulting it is to have someone who knows nothing about the
details of your work tell you that they know better than you do?

Web Developers as Gadget Developers

It’s not hard to speculate on the reasons why Dashboard is based on WebCore technol-
ogy. First, it’s already there—the JavaScript engine and HTML/Css renderer are built-in
components in Mac OS X. Second, basing Dashboard development on industry stan-
dard web technologies means that anyone who knows how to design a web page knows
how to design a Dashboard gadget.

In terms of attracting hobbyist-level developers, Dashboard is going to be an order of
magnitude more approachable than Cocoa application development. If you know HTML
and css, you can design a gadget layout. If you know JavaScript, you can program a
gadget.

I can’t think of any possible way that gadget development could be based on some-
thing that would enable more Mac nerds to get up and running writing their own
gadgets. That the presentation is based on the same HTML/ css rendering engine as used
by Safari makes it possible to test your layouts by loading them in the browser. (In fact,
that’s exactly what the Dashboard developer tutorial recommends.)

This, in fact, is the single biggest difference between Dashboard gadgets and the
aforementioned desk accessories in the original Mac OS. Because of the tight memory
constraints of the original Mac (only 128 KB of raM, and 400 KB of disk space per
floppy), desk accessories needed to be as small and lightweight as possible. Which meant
that they were mostly written in 68000 assembler code.

Andy Hertzfeld (him again) used Pascal to write the first version of the Puzzle desk
accessory|in 1982, two years before the Mac shipped. But at 6 KB, it was deemed too
big:

Jerome Coonen, the software manager, came by my cubicle one morning
to tell me that they decided not to ship the puzzle, partially because of the
game-like perception, but mostly because it was just too big. Applications
were very tight on RAM, and the puzzle was one of the biggest desk acces-
sories because it was written in Pascal. At over 6K bytes, it also ate into the
available disk space.

I liked the puzzle and I didn’t want to capitulate to the buttoned-down,
all business view of the customer, so I told Jerome, “You know, the puzzle
doesn’t have to be so big. I bet I could rewrite it and get it to take up less
than 1x bytes. Would you keep it if I got it that small, or is it really the
other issue?”

http://www.folklore.org/StoryView.py?project=Macintosh&story=Puzzle.txt
http://www.folklore.org/StoryView.py?project=Macintosh&story=Puzzle.txt

Jerome thought about it, and then told me if I could get it down to 600
bytes or so, it would be in the release. The only problem was I had to get
it done over the weekend, because they had to send the manuals out to the
printer soon, and there was plenty of other stuff for me to work on.

Of course, I couldn’t resist a challenge like that. It only took a few hours on
Saturday to recode it in assembly language, and get it down to the required
600 bytes, since it no longer had to link with the bulky Pascal code. I
proudly showed it off to everyone on Monday, and it did make it into the
first release, and stayed there for many years, although it was completely
rewritten a couple of times, for various reasons.

Thus, the difference between the old world of desk accessories and the upcoming
world of Dashboard gadgets: there are only a handful of people in the world who
could write a puzzle game in the form of a Macintosh device driver using just 600
bytes of 68000 assembler; there are hundreds of thousands who can write one using
HTML/ Css/JavaScript.

Desk accessories were harder to write than real Mac apps; Dashboard gadgets are
far easier, and are based on web standards that people already know. Dashboard gad-
geteering is going to be hugely popular—largely because it’s based on web development
technologies people already know.

Cry Me a River

In an interview with CNet reporter Ina Fried (“Developer Calls Apple’s Tiger a Copy+
cat’), Arlo Rose said:

“It’s insulting, is what it is,” Rose said in a telephone interview. “They
could have at least offered to work with us or to buy it.”

It’s natural for Rose and co-creator Perry Clarke to be upset; Dashboard is clearly a
Konfabulator-killer. (Rose to Fried: “We're either going to have to move to another
platform or work on some other project.”)

But what’s the argument that Apple has done something wrong? That if a third-party
developer something first, Apple should never step on that developer’s toes? Ever? No
matter if Apple is already working on something similar but better? No matter if Apple
can provide a significantly better implementation? No matter if it’s something that would
be a natural fit as an official component of the OS?

Scott Knaster—long-time Mac programming author—echoes Arlo Rose’s opinion
of “the least” Apple should have done:

Dashboard is interesting. It looks like a complete ripoff of Konfabulator,
right down to the word “widgets”. Shame, Apple. At least buy the guy’s
technology.

My question: Even if Apple considered Konfabulator’s technology undesirable?

In the lean years between John Sculley’s exit and Jobs’s return, Apple indeed seemed
to follow this dictum of not stepping on Mac developers’ toes. And you know what we
got? Years of stagnation with System 7.5.

I am not advocating that Apple mindlessly trample on independent Mac developers—
what I'm saying is that Apple cannot be afraid to improve the Mac OS as best it can,
even if that means going places where small indie developers have gone first.

In cases where indie developers have created products that meet Apple’s own high
standards, the company has shown that it’s willing to embrace existing solutions.

http://news.com.com/2100-1045_3-5250692.html
http://news.com.com/2100-1045_3-5250692.html
http://foodisworse.typepad.com/this/2004/06/apple_wwdc_day_.html

Most famously in recent years, iTunes—which started as SoundJam. Apple bought
the rights, hired the development team (lead developer Jeffrey Robbin is now a serious
big shot at Apple, helping lead all of Apple’s various music-related initiatives).

Most infamously, the Watson/Sherlock controversy. Except note that |Apple offered
Watson developer Dan Wood an engineering position on the Sherlock team, which
Wood declined. This is of course contrary to the popular misconception that Apple
“blindsided” Wood with Sherlock 3 (which had been in development before Watson
debuted). Wood wanted compensation for the existing work he’d done on Watson, not
just a job that would pay him for future work on Sherlock. Twice offering Wood a job
on the Sherlock team doesn’t qualify as oppression.

That Konfabulator made it easy to create custom-designed widgets—does that mean
Apple was obligated never to ship something that made it easier? With a smaller memory
footprint? Isn’t it plausible that this was part of the plan for WebCore and Exposé all
along—and that obtaining the rights to Konfabulator wouldn’t have helped them with
this plan at all? Please keep in mind that just because they do the same thing from a
user’s perspective doesn’t mean they do the same thing at all in terms of under-the-hood
implementation.

Apple may hire you to work for them. They may buy your code if they want it. But
they will not pay you off just for an idea, nor should they be expected to.

There aren’t that many brand-spanking new ideas under the sun, and Konfabulator
isn’t one.

The idea of “little apps” began with Apple’s desk accessories, 23 years ago.

The idea of a scriptable runtime for displaying little windoid applets is not original
to Konfabulator. (C.f. DesktopX, a similar product for Windows that shipped in 1999.)

Even Konfabulator’s obsessive focus on the pixel-perfect cosmetic appeal of its wid-
gets 1s not novel. The original Mac desk accessories were designed pixel-by-pixel. The
standards for GuI showboating have certainly changed since 1984, but that’s only as a
function of hardware capabilities.

Susan Kare’s amzing layout for the original Control Panel desk accessory involved
no text labels, only graphics (screenshot from Folklore.org):

And, according to Hertzfeld (who else?), Steve Jobs personally designed every pixel-
level detail of the original Calculator.

At the end of my article on the Liteswitch X “controversy”, |I wrote:

... when a utility is designed to compensate for a hole in Mac OS X, the
developer should not expect the hole to remain unfilled by Apple forever.

If you’re going to compete, you've got to accept that you might lose. Konfabulator
is a software platform; Rose and Perry decided upon a rather closed platform model:
the only way even to run a Konfabulator widget is to purchase a license to the runtime.

In my review of Konfabulator 1.0, I wrote:

What’s most perplexing to me is what Konfabulator does not include: an
IDE. There is no visual widget editor or source code editor. They do in-
clude fairly comprehensive documentation on the widget XML structures
and the supported JavaScript syntax, but when it comes to creating your
own widgets, youre on your own. Arlo Rose, writing in the Konfabulator
support forum, wrote:

Photoshop and BBEdit are your friends. :-)

We are working on a visual editor, but we are net [sic] yet sure
when it will be released.

6

http://www.macobserver.com/article/2002/07/29.7.shtml
http://www.macobserver.com/article/2002/07/29.7.shtml
http://www.xpthemes.com/forums.asp?MID=19&CMID=19&AID=4472
http://www.folklore.org/StoryView.py?project=Macintosh&story=Calculator_Construction_Set.txt
http://www.folklore.org/StoryView.py?project=Macintosh&story=Calculator_Construction_Set.txt
http://daringfireball.net/2003/10/commandtab
http://daringfireball.net/2003/02/konfabulous

So they’re obviously aware of the need for an 1DE. But I can’t help but think
it would have better had they waited for the IDE before they started selling
Konfabulator. As it stands now, you need Konfabulator just to run a widget.
Let’s say I have an idea for a widget-type application that does something
very cool. I wouldn’t write it for Konfabulator, because I wouldn’t want to
limit the audience to those who’ve paid $25 for Konfabulator.

It makes more sense to me to give away the runtime engine, and let ev-
eryone run widgets for free. Then charge money for the IDE (and charge
a bit more than $25). This makes widget-writing more appealing—you
can share your work with the whole wide Mac world, not just the pixel-
tweaking Konfabulator Klub.

A widget construction IDE would have made Konfabulator a product, not just a platform
for pixel-pimping GuUI tweakers. If they’d gone that route, they’d still have a future in
the post-Dashboard world—by expanding the 1DE to produce Dashboard gadgets in
addition to Konfabulator widgets. (Note to Mac developers looking for software ideas—
hint, hint).

It was their choice to compete only on the basis of providing a widget platform.

