Economist | http: / /www.economist.com /science /tq/PrinterFriendly.cfm?Story_|D=2724348 10 June 2004

BRAIN SCAN

Unix’s founding fathers

Dennis Ritchie invented C and was one of the key members of the team behind Unix—two
developments that underpin much modern software

irectly west from the southernmost tip of Manhattan, a bit more than 15 miles away,

lies the sleepy-looking suburban town of Murray Hill. Just south of the town’s cen-
tre lies 2 huge complex of buildings which, despite its size, looks fairly unprepossessing,
boring as only business parks in the suburbs can be. But a surprising portion of what
passes for modern technology can be traced back to this site, the home of Bell Labora-
tories, now the research arm of Lucent, but previously that of AT&T, a big American
telecoms firm. It was at the Labs, as they are known colloquially, that the transistor was
invented in 1947, making possible solid-state computing and paving the way for the
microchip.

But the Labs were not only the birthplace, in this sense, of modern computer hard-
ware. Much of modern software—computer programs and the special programming
languages in which they are written—originated there too. Two instances in particular
stand out: the programming language called ¢, which from the early 1970s has been
perhaps the most popular programming language; and the Unix operating system, first
booted up in 1971, and still going strong in everything from laptops to airline-reservation
systems. Dennis Ritchie, who has worked at the Labs since 1967, was central to both
projects. He is revered as the inventor of ¢, and, with Ken Thompson, as the co-inventor
of Unix.

However, both projects were, in fact, intensely collaborative. Dr Thompson had writ-
ten c’s immediate predecessor, a language known (logically enough) as B. And though
Dr Thompson was the first person to work on Unix, Dr Ritchie and others, including
Brian Kernighan, Rob Pike and Doug Mcllroy (who headed the research group), were
fundamental to its development. Dr Ritchie is the last of this group to remain at the
Labs—at 62 he retains an aura of youthful enthusiasm. While others have departed for
academia or newer companies, he is now the head of systems software research at Bell
Labs, and is continuing his research into operating systems and languages.

Dr Ritchie likes to emphasise that he was just one member of a group. With char-
acteristic modesty, he suggests that many of the improvements he introduced when
developing ¢ simply “looked like a good thing to do”. Anyone else in the same place at
the same time, he implies, would have done the same thing. But Bjarne Stroustrup, who
came to the Labs later and designed c++, a further improved version of c, disagrees.
“If Dennis had decided to spend that decade on esoteric math, Unix would have been
stillborn,” he says.

All the key participants recall the genesis of Unix and ¢, and the environment at Bell
Labs, as something of an idyll. As Dr Kernighan says, “it was a remarkable collection of
really outstanding people who were pretty well paid to do whatever they wanted, and
most of them had really good taste about what to work on.”” Dr Mcllroy later wrote
that “so many good things were happening that nobody needed to be proprietary about
innovations.” Unix was not even given a name for more than a year after it was first
invented. So much of what they did was done, initially, for themselves alone, sometimes
for sheer amusement, and yet it has had a lasting legacy in the world outside. How did
this happen, and what lessons follow for today’s programmers?

There we were, all in one place

To answer this question, it is necessary, though difficult, to recall just how comparatively
primitive the state of computing was 30 years ago. The first version of Unix was written

http://www.economist.com/science/tq/PrinterFriendly.cfm?Story_ID=2724348

by Dr Thompson for the PDP-7, a computer made by the Digital Equipment Corpora-
tion, which cost a mere $72,000, and came with eight kilobytes of memory, and a hard
disk a bit smaller than a megabyte. By contrast, a desktop computer today typically costs
a hundred times less, has roughly 64,000 times as much memory and a hard disk 40,000
times as big.

That any software, albeit with many revisions and modifications, could have sur-
vived such changes and still be a core technology today is nothing short of astonishing.
Amusingly, Dr Ritchie recalls that one of the factors that made Dr Thompson’s program-
ming of Unix possible was the fluency he had gained with the ppp-7 while writing an
early computer game called “Space Travel”, which also happened to be one of the first
programs to run under Unix.

The severe limitations of the computers of the day forced Dr Thompson and Dr
Ritchie to be ruthlessly efficient in their designs. Of course, this was true of other
operating systems and languages of the time, which have long since faded from use.
‘What distinguished the Bell Labs team is that, from the beginning, they focused on
doing things that had not been done before, and doing them with clarity. In the words
of Arnold Ross, an American mathematics educator, they “thought deeply of simple
things”. One key and ambitious innovation was the idea of portability. At the time,
different kinds of computer hardware ran different operating systems. Both Unix and
¢ were, from the beginning, meant to move beyond the ppP-7; indeed, soon after its
invention, Dr Ritchie and Dr Thompson “ported” it to the PDP-11, a more powerful
model. Indeed, Dr Ritchie says that the PpDP-7 was already obsolete at the time. It was
the team’s success in designing a rudimentary word-processing system using Unix on
the ppP-7 that allowed them to get the funds for a ppP-11. The word processor proved
enormously useful to Bell Lab’s patent division.

In moving both pieces of software to the pDP-11, they accomplished another re-
markable feat. Unix was re-written almost entirely in c. Until then, operating systems,
which handle all the day-to-day workings of a computer, had been written in “machine
language” which was different for different computers, and nearly opaque to humans. c,
on the other hand, is a “high-level language” in that it has a greater degree of abstrac-
tion. This step meant that Unix could easily be moved to just about any computer of
the time that had adequate memory; all one had to do was write a compiler (a program
that translates ¢ into machine language) for each computer. And because Dr Ritchie
had been careful to keep the core of ¢ very compact, this was relatively easy to do. Dr
Ritchie counts the portability of Unix as one of the two major factors for its success,
and says that ¢ “tagged along with that”. However, as he admits, the fact is that ¢ was
instrumental in making Unix portable.

The second factor Dr Ritchie cites is the “software tool approach” of Unix—
breaking up complicated tasks into discrete software tools made the system easier to
work with. For example, “paging”—the need, in the old days of character-based dis-
plays, to show only one screenful of information at a time—was broken into a separate
small program. Dr Mcllroy was the one who devised the system of “pipes” that allowed
different programs to pass data to one another. This was unusual for the time. Dr Ritchie
points out the strange irony that the Unix group was, in fact, outside the main comput-
ing centre at Bell Labs, and hence was more willing to experiment.

Another factor helped the duo of ¢ and Unix to spread much faster than they
otherwise would have. AT&T was required under the terms of a 1958 court order in an
antitrust case to license its non-telephone-related technology to anyone who asked. And
so Unix and ¢ were distributed, mostly to universities, for only a nominal fee. When
one considers the ineptness of AT&T’s later attempts to commercialise Unix—after the
court order ceased to be applicable because of another antitrust case which broke up
AT&T in 1984—this restriction, an accidental boost to what would later become known
as the open-source movement, becomes even more crucial.

The later history of Unix is convoluted, and indeed has again become mired in
court battles. Following its origins at Bell Labs, a competing version sprang up at the
University of California, Berkeley, which first released its version of Unix in 1977, under
the leadership of a graduate student named Bill Joy, who later went on to found Sun
Microsystems. Ideological battles raged between adherents of the two versions of Unix
through much of the 1980s.

To an extent, this rivalry was stripped of relevance by an unexpected entrant. In
1991, an obscure university student in Finland, Linus Torvalds, announced a project to
write a new, open-source clone of Unix from scratch—what has come to be known
as Linux. That someone would seck to do this is a testament to the high regard in
which programmers hold the achievement of the Bell Labs group. Dr Ritchie, in return,
expresses a high regard for Linux, attributing its success to the fact that it was a unified
effort, at a time when other competing versions of Unix were mired in legal battles.

Linux is also the true heir of the Unix tradition in the sense that its development
process is collaborative. Dr Pike says that the thing he misses most from the 1970s at Bell
Labs was the terminal room. Because computers were rare at the time, people did not
have them on their desks, but rather went to the room, one side of which was covered
with whiteboards, and sat down at a random computer to work. The technical hub of
the system became the social hub.

It is that interplay between the technical and the social that gives both ¢ and Unix
their legendary status. Programmers love them because they are powerful, and they
are powerful because programmers love them. David Gelernter, a computer scientist at
Yale, perhaps put it best when he said, “Beauty is more important in computing than
anywhere else in technology because software is so complicated. Beauty is the ultimate
defence against complexity.” Dr Ritchie’s creations are indeed beautiful examples of that
most modern of art forms.

