
Daring Fireball | http://daringfireball.net/2004/09/bbedit_8 14 Sept 2004

BBEdit

By John Gruber

All applications are software; but not all software is an application. The key difference
is the primacy of the user interface in application development. To paraphrase Ed-

ward Tufte, the user interface is the application—whereas most non-application software
doesn’t even have a user interface.

From the perspective of a programmer, all software is just source code. In a broad
sense, the source code for a -less background process such as the Apache web server
very much resembles the source code for a application. Developers’ relationship
with the software they produce is abstract, conceptual. When an artist wants to produce
a circle, he draws a circle. When a programmer wants to produce a circle, he writes
a few lines of source code. It is the ability to grasp these abstractions that separates
programmers from non-programmers.

From the perspective of users, however, the importance of the user interface is pro-
found. For users, the application is what they can see, click, and interact with. A user’s
relationship with an application is perceptual, sensual.

The raw capabilities of a particular application are, for most users, irrelevant; it’s
the usability that matters. Features which aren’t presented via an intuitive, discoverable,
usable interface might as well not even exist.

For something as inherently nerdy as a text editor, BBEdit is phenomenally popular.
But its appeal is not universal: in addition to those who simply have no need for a serious
text editor, or who simply prefer other editors, there are vocal contingents of BBEdit
non-believers who profess outright bewilderment at BBEdit’s decade-long dominance
of the Mac text editor market.

There are two vectors for such bewilderment, both of which belie a genuine under-
standing of what it is about BBEdit’s “interface” that makes it so beloved:

• One is the conflation of aesthetics with usability. The idea that the quality of an
app’s user interface is simply a measure of how good it looks; i.e., that the state of
being “Mac-like” implies only adherence to the gestalt of Apple’s recent-vintage
Aqua-flavored visual whiz-bangery: gorgeous iconography, anti-aliased type, vi-
brant primary colors, and visual effects such as transparency, drop shadows, bezel
edges, and smooth-gliding animated widgets.

This is not to say that aesthetics are unimportant. To find something aesthetically
pleasing is deeply satisfying in a left-brained way. But aesthetic appeal is but one
aspect of user interface design, not the whole of it—and for a serious tool, not the
most important aspect. Compare and contrast to, say, choosing an office chair. It’s
certainly nice to have a chair that looks good; but if you’re going to be sitting in it
 or more hours every day, ergonomics are much more important than aesthetics.

I won’t dispute that BBEdit’s interface is relatively unadorned; but so while it’s not
pretty, it isn’t trying to be. Handsome is perhaps more apt. The layout of windows,
dialogs, and menus is meticulous and thoughtful. The point is not to impress you;
the point is to enable to you get work done.

• The second is the belief that the user interface is worthy only of afterthought; that
the real software is the underlying implementation, and that the user interface is
but a wrapper. (Cf. April’s “Ronco Spray-On Usability”.)

This view is generally expressed only by those who are extremely technically
nerdy—i.e. the sort of guys who honestly see Mac OS X as Unix with a Mac ,

http://www.37signals.com/svn/archives/000831.php
http://www.37signals.com/svn/archives/000831.php
http://apache.org/
http://www.barebones.com/products/bbedit/index.shtml
http://daringfireball.net/2004/04/spray_on_usability

rather than as an updated version of the Mac OS with Unix-like underpinnings.
Their question to BBEdit advocates, invariably, goes something like: “What does
BBEdit do that [my favorite open source editor] doesn’t do?”, where the variable is
usually Emacs or vi/vim—or occasionally jEdit.

The problem is that this is not the right question. Emacs, Vim, and their vari-
ous derivatives are very fine editors, and inarguably offer many powerful features.
They are also difficult to learn, cryptic to the uninitiated, and their human inter-
faces (such as they are) are unlike anything a Mac user would consider normal.
Some would have you believe that such is the price of power—that easy-to-use
and powerful are mutually exclusive.

The appeal of BBEdit is in its balance of powerful text-editing features and an
elegant, intuitive, and unabashedly Macintosh-style interface—and where by “in-
terface” I don’t mean in the sense of superficial cosmetic appeal, but in the deeper,
interactive sense.

It’s also worth pointing out here that “easy-to-use” is probably not the right
adjective. Once you have learned to use any software package, no matter how
cryptic its user interface may be, it can be very “easy” to use. Hence it’s true
that one might find Vim easy to use if one takes the time to learn it and grow
acclimated to its keystroke-driven interface. But that’s a big “if ”. The Macintosh’s
main appeal is not that it is easy-to-use, but rather that it is easy-to-learn. The
difference is significant, but often overlooked.

In short, the point of BBEdit is not just what it looks like or what it does, but how it
feels. The challenge Bare Bones faces when releasing a major feature upgrade is not just
to add to BBEdit’s capabilities, but to do so in a Mac-like way.

Brief Aside on the Case for Using Emacs or Vim

Furthermore, it’s also worth pointing out that, ironically, the most compelling case for
adopting Emacs or Vim as one’s primary editor is not their feature sets, but their inter-
faces. Specifically, the fact that they run everywhere in almost exactly the same way. Any
system with a Unix-like shell can run these editors, and as of , every significant
desktop operating system either ships with a Unix-like shell or has one available as a free
download. Thus, if you master Emacs or Vim, you can rightly feel quite confident that
you’ll be able to use it on every computer you use for the rest of your life.

If by circumstance or choice you use both a Mac and one or more non-Macs, it’s an
appealing thought to be able to use the same editor on every system—using the same
keystrokes, shortcuts, and customizations.

Text editing habits run deep. Mac users forced to switch to Windows regularly
plead with Bare Bones to port BBEdit to Windows. Windows users who switch to
the Mac regularly badger Bare Bones to make BBEdit more like their favorite editor
from Windows (e.g. UltraEdit or TextPad). And, I’m guessing, after giving up on a
BBEdit port to Windows, former BBEdit users start badgering for the BBEdit-ification
of UltraEdit and TextPad.

Emacs and Vim users, on the other hand, just copy their configuration files from
one machine to another—be it Windows, Linux, or Mac—and they’re right at home.

BBEdit 8.0 First Impressions

Which brings us to BBEdit ., the latest version of Bare Bones Software’s flagship text
editor, released with much fanfare two weeks ago. Before we proceed, let’s just get it out
of the way and link to my standard I-used-to-work-for-Bare-Bones-Software disclosure.

http://www.gnu.org/software/emacs/emacs.html
http://www.vim.org/
http://jedit.org/
http://ultraedit.com/
http://textpad.com/
http://www.barebones.com/products/bbedit/index.shtml
http://daringfireball.net/2002/12/bare_bones_disclaimer

The first thing you’ll notice is that BBEdit sports a new application icon. The
stately capital B set in bold Palatino—a hallmark of BBEdit’s iconography since its public
debut years ago—has been replaced by something, well, a bit jauntier:

Reaction from the design community has not been kind:

• Jon Hicks:

With the release of BBEdit ., has come the most inexplicable new
feature. The application icon has been updated with the most grotesque
typography, looking like a Comic Sans derivative.

(Hicks whipped up a replacement icon, which, whatever you think of the new
BBEdit icon, is far worse—not because it’s unappealing, but because it’s un-
BBEdit-y.)

• Andrei Herasimchuk:

But what the hell is up with the new BBEdit . icon? That has to be
the worst looking “B” I’ve seen in some time. It almost looks like a
“B” from Comic Sans! And we all know how catastrophic that is.

Suffice it to say the new icon is the most unpopular aspect of version . On the other
hand, if the icon is the most-complained-about change, it speaks well for the application
itself.

The most essential new aspect of BBEdit isn’t what it looks like, or even what it
does, but what it doesn’t do—which is run on Mac OS . In fact, not only does BBEdit
 only run on Mac OS X, it requires .., due to several bugs in earlier versions of
Panther. (Having beta-tested BBEdit under pre-.. builds of Panther, I can attest
to this.)

This isn’t just an idle milestone—BBEdit ’s Mac OS X-only nature informs nearly
all of its major new features.

This is not to say the last few versions of BBEdit didn’t take advantage of Mac OS
X-only features. E.g., shell worksheets and the built-in Web Kit preview, which
for obvious reasons were only available when running BBEdit on Mac OS X.

Now that it only runs on Mac OS X, however, BBEdit can take advantage of OS
X-only features throughout the entire application, including UI widgets only available
on OS X. Most of the additions and changes to BBEdit ’s user interface are tied to OS
X-only controls and conventions.

I see no need to provide a comprehensive overview of every new feature; Bare Bones’
web site does a good job of that. And if that’s not enough information for you, the full
change notes are available: over bullet items spanning printed pages. Needless to
say, by any measure, this is a significant update.

Multi-Document Interface

The most profound addition is the new multiple-document interface. Analogous to
tabbed browsing with Safari, you can now open multiple documents within a single

http://www.hicksdesign.co.uk/journal/564/bare-bones-means-comic-sans
http://www.designbyfire.com/000144.html
http://bancomicsans.com/
http://www.barebones.com/products/bbedit/new.shtml
http://www.barebones.com/products/bbedit/new.shtml
http://www.barebones.com/support/bbedit/arch_bbedit80.shtml
http://www.barebones.com/support/bbedit/arch_bbedit80.shtml

BBEdit text window. A window’s open documents are displayed in a drawer on the
right side of the window.

Thus, the multi-document interface is much more like OmniWeb’s “tabbed” brows-
ing than Safari’s. And like OmniWeb, BBEdit allows you to drag documents from one
window to another. Clicking an icon in the status bar opens and closes the Documents
drawer. (A nice touch: if the Documents drawer in the front window is closed, it will
open automatically if you hover a dragged document on top of the drawer-toggling icon
in the status bar.)

The multi-document interface is, of course, completely optional. If you’re not interested,
you can merrily continue using BBEdit using only the traditional one-document-per-
window. Conversely, a few new document-related preferences allow you to configure
BBEdit to always use the multi-document interface, putting new and opened documents
in the frontmost window by default.

It’s a radical departure from previous versions, where every text window represented
one document, and every open document was in its own window. But it doesn’t feel
radical. It just works, exactly how you’d expect it to. You can ignore it, you can use
it all the time, or, you can use it when you want. I’ve been using the feature since
it debuted during beta testing, and while I tend to use the traditional one-document
scheme most of the time (if for no other reason than a decade of habit), I’ve found the
multi-document interface convenient for grouping related files together.

If you don’t want to give up the screen real estate for the documents drawer, you
can keep it closed and switch between open documents in the front window using the
also-new Navigation Bar, which looks and works very much like the Navigation Bar in
Xcode.

Unicode and Text Encoding Improvements

BBEdit now uses for text rendering. In all prior versions of BBEdit, the render-
ing engine was implemented using QuickDraw, a set of s dating back to the original
Mac. This is an enormous under-the-hood change, text rendering being a core task of
a text editor.

If you only use roman character sets, you likely won’t notice that anything has
changed—text editing and rendering looks and feels identical to that of BBEdit . Where
the new -powered engine shines is in the rendering of Unicode text. BBEdit now
supports multiple languages—e.g. Chinese, Japanese, and English—all within the same
document. If you don’t need advanced Unicode support, BBEdit’s new -powered
rendering engine works just as well as the old QuickDraw engine. If you do, you can
now use BBEdit for tasks it previously couldn’t handle. For a small subset of BBEdit
users, this is one of the biggest improvements in the history of the app.

BBEdit’s handling of text file encoding formats has also improved greatly. A new
Reopen Using Encoding sub-menu in the File menu allows you to manually specify

http://developer.apple.com/intl/atsui.html

the text encoding for a given file. Thus, if you open a file saved using Windows Latin
 encoding, but BBEdit displays it as Mac Roman, you can easily reopen the file with
the proper encoding. With BBEdit , you needed to close the file, then reopen it using
the Open dialog box, specifying the text encoding using a pop-up menu in the dialog.
There were other ways to do this (Marc Liyanage’s character set conversion Perl filters
and the Midex BBEdit plug-in, for example), but nothing as easy or graceful as the new
Reopen Using Encoding menu.

Text Factories

BBEdit’s multi-file searching allows BBEdit to act as a production tool for batch process-
ing many files at once. Sure, it’s nothing a short Perl or Python script couldn’t do—but
if you think everyone can or should learn to program, you’re missing the point.

But there’s only so much a single search/replace can do. It’s great if you need to some-
thing simple, like changing the copyright date across a few thousand files. But if
you need to string together multiple replacements, it’s no longer a one-step process.

Enter “Text Factories”. A Text Factory is a new type of document that contains a
list of one or more actions. You can easily add or remove actions similar to the way you
add/remove search criteria in the Finder’s Find window: via ‘+’ and ‘-’ buttons next to
each action. Text Factories seems conceptually similar to the Automator feature coming
in Tiger.

Many of the commands in BBEdit’s Text menu are available as Factory actions, as is the
Search menu’s Replace All command. You can change files’ encoding and line-ending
style (Mac/Unix/). And for anything not covered by the built-in actions, you can
also specify an AppleScript or shell script (Perl, Python, Ruby, bash, etc.) as an action
item.

You can execute a Text Factory against a single document window, but the real
power comes when batch processing files. If you regularly perform the same repetitive
actions against multiple files, a Text Factory might be able to automate the entire process,
without scripting.

And even if you’re comfortable with scripting—whether with AppleScript or a shell
language—Text Factories still might prove useful for batch processing. If you write your
script to serve as a Text Factory action, the script only needs to be concerned with
processing the text of a single file at a time, saving you from writing code to recurse
folders and loop through, open, and save files—which I consider a minor pain in the ass
even in Perl.

Multi-file Text Factory processing can also take advantage of the same file filter-
ing mechanism used in BBEdit’s multi-file searching, making it easy to limit Factory
processing based on attributes such as file names, modification dates, and labels.

One obvious improvement for the future would be to allow Text Factories to be
saved as “droplets”—small applications that you can drag files and folders to in the

http://www.entropy.ch/software/perl/
http://www.barebones.com/support/bbedit/plugin_library.shtml#plugin_m10
http://www.barebones.com/products/bbedit/benefitsexercise.shtml#TextFactories
http://www.apple.com/macosx/tiger/automator.html

Finder. Adobe Photoshop and ImageReady allow their actions to be saved as droplets,
and it’s a convenient way to invoke them when processing multiple files at once.

Multi-File Searching

Speaking of multi-file searching, BBEdit’s mighty Find dialog has received a makeover.
Turning on multi-file searching now opens a drawer on the left side of the dialog. The
drawer contains a list of search targets: all open documents, recently-searched folders,
and every Web Site configured in BBEdit’s preferences. It’s better-organized and
more convenient than the pop-up menus it replaces.

Plus, multi-file searches now run in their own thread, which means that searches
can run in the background while you continue to work in BBEdit. Even though most
searches I run take only a few seconds to run, it’s a nice improvement when I do run a
lengthy search.

Codeless Language Modules

I mentioned this feature previously, when I released my Apache Configuration language
module. Out of all the new features in , this is probably the one that most deserves a
response of “It’s about time.” Prior to version , language modules for BBEdit needed to
be compiled plug-ins written in /++. The advantage to this is that BBEdit’s compiled
language modules are both powerful and very fast. The disadvantage is that most people
aren’t willing or able to create them on their own.

Most text editors follow the opposite approach, and only support languages modules
in a plain text format. Now that BBEdit supports both, it should provide a best-of-both-
worlds experience.

However, BBEdit .’s codeless language module mechanism currently has a few
shortcomings. It’s more than a little biased toward programming languages, with good
support for things like functions, string delimiters, and keywords. What it’s not so good
for are markup languages. (Like, say, Markdown.) The current mechanism has no
concept of things such as tags, and it doesn’t allow for using regex patterns to match
language constructs.

Nor does it allow for embedding one language within another, the way BBEdit’s
built-in language module for supports inline chunks of other languages, such as
, , and .

Plug-ins

Speaking of compiled plug-ins, BBEdit now supports plug-ins compiled using Xcode
(i.e. Mach-O binaries). Previously, BBEdit required plug-ins to be binaries, which
effectively meant they had to be compiled in CodeWarrior. This restriction pretty much
eliminated hobbyist-level plug-in development, combined with the fact that many of
the text-munging tasks tackled with plug-ins a decade ago are now much more easily
written in Perl or Python. BBEdit still supports old-style plug-ins, with the sole
restriction that it no longer supports plug-ins that aren’t Unicode aware.

Also, a bunch of plug-ins that used to ship with BBEdit are now built-in commands
in the Text menu: Add/Remove Line Numbers, Prefix/Suffix Lines, Sort Lines, Pro-
cess Duplicate Lines, and Process Lines Containing. This, combined with the fact that
other third-party plug-ins have been obsoleted by other new features in ., has left
me with zero plug-ins (other than language modules). Examples of obsoleted plug-ins:
BBTidy (Tidy is now available via BBEdit’s Markup menu) and Midex (no longer
necessary thanks to the aforementioned Reopen Using Encoding sub-menu). I had a

http://daringfireball.net/projects/apacheconfig

plug-in I wrote years ago for myself but never released, Stupefy Quotes, which has been
obsoleted by the new Straighten Quotes command in the Text menu.

I’m be interested to see whether support for Xcode spurs a surge in plug-in and
compiled language module development. I’m guessing no for plug-ins—Unix Filters
have eaten their lunch—but yes for compiled language modules.

Support Files

By dropping Mac OS support, BBEdit is now able to fully support --style con-
ventions for supporting files:

• The application support folder is now named “BBEdit” instead of “BBEdit Sup-
port”. More importantly, it now supports proper domain layering, by which I
mean that you can put a “BBEdit” support folder in /Library/Application

Support/, and it will be available to any users on the machine running BBEdit.
But each user can also have their own BBEdit support folder in the Application
Support folder in their user Library folder, and the items therein will be used in
addition to those from the top-level Library folder.

• Custom keystroke shortcuts assigned to items such as AppleScripts, Glossary items,
and Unix filters are no longer stored in the resource forks of each individual file.
Instead, custom keystrokes are stored separately from the files, in a similar way
as the custom menu key shortcuts for regular menu items. One reason for this is
that users might not have sufficient privileges to write to the files in the top-level
Library folder. Another is that it makes it possible for BBEdit to do a better job
identifying and preventing keystroke conflicts.

• BBEdit now uses OS X’s built-in preferences system. Thus there’s now a ‘com.-
barebones.bbedit.plist’ file containing your preference data, and, if necessary,
you can set or check preference values using the defaults command-line tool—
or you can hack a copy of plist file using BBEdit itself. There’s also a ‘com.-
barebones.bbedit.PreferenceData’ folder (named as such so that it sorts next
to the regular preferences file in the Finder), containing user preferences that
aren’t saved in the regular prefs file—including saved grep patterns, file filters, and
/ bookmarks.

Document State

Document state is text-file-specific metadata; for BBEdit, this includes things like the
position and size of the window, the position of the scrollbar, the current text selection
range, and the text encoding used to save the file. In all previous versions of BBEdit, state
data was stored in the resource fork of each document. This technique was pioneered, I
believe, by (and BBEdit’s state resources were a superset of ’s).

This scheme was quite clever, and worked exceedingly well in the old Mac OS
world. The only thing essential is the actual text of the document, which was stored in
the data fork. By stashing state info in the resource fork, you could preserve it by passing
it from one resource-fork-savvy medium to another. Send it to someone on Windows
or Unix, and the state data would be lost, but the actual text in the data fork would be
unaffected.

In the new world of Mac OS X, however, storing state data in resource forks has
significant downsides. For one thing, resource forks don’t survive the roundtrip through
version control systems such as or Subversion. It also causes problems with files are
stored on file systems that don’t support multiple forks, such as WebDAV or .

For those reasons and others, BBEdit has switched to an entirely new system for
storing document state. Instead of storing state data inside each file, you get a single
preference file that contains the state info for every file you edit. It’s stored in a new file
inside com.barebones.bbedit.PreferenceData: “Document State.plist”.

This solves all of the aforementioned problems with resource fork state info—you
can commit a file into , check out a new revision, and your state settings for that
document will be preserved. If you work with multiple collaborators on the same set of
files in a repository, each of you can maintain your own state settings for each file.

This is not to say there aren’t downsides to the new system. The new centralized state
database is fragile—it references individual files by, of all things, a hardcoded pathname.
Thus if you rename or move a file, BBEdit loses track of its state. Move it back and the
state settings come back.

This is clearly a trade-off. For anyone who works in a cross-platform environment
or depends upon non-resource-fork-savvy tools, the new system clearly works better.
However, for anyone for whom resource fork state storage did not pose a problem, the
new system may not work as well, particularly for anyone accustomed to state persisting
when you rename, move, or copy the file.

Other Miscellaneous Improvements Based on Mac OS X Tech-
nology

• BBEdit now optionally supports running pages through the Apache web server on
your own machine before previewing them. Thus you can preview -powered
pages, and the preview will show the actual -rendered output. There’s a world-
class web server on every copy of Mac OS X, why not use it?

• BBEdit now uses Mac OS X’s built-in spelling checker. The advantage isn’t that
the system’s spelling checker is particular great, but that BBEdit’s old built-in
checker was rather clumsy and annoyingly modal. BBEdit doesn’t yet support
check-as-you-type, but it does use the standard Spelling palette, and nicely un-
derlines misspelled words in the document window itself. (The system’s Spelling
palette inexplicably doesn’t have a Correct All button, and so neither does BBEdit.
I hope this gets fixed, either by Apple in . or by Bare Bones in a future update
to BBEdit.)

• BBEdit now uses the system’s Fonts panel for choosing the display font and tab
width of the current document.

Other Details Worth Mentioning

• In addition to the bbedit command-line tool that started shipping with BBEdit
., BBEdit introduces a bbdiff tool for comparing the contents of files and
folders. This completely obsoletes the Perl script of the same name I slapped
together two years ago. Bare Bones’ new tool does the same things as my script,
plus more.

• BBEdit introduces several new text color preferences, including an option to
subtly highlight the current line. It also allows you to specify custom colors for
the selection highlight, independent of the system-wide setting set in System
Prefs—this is useful if you decide to use a dark background with light text.

• When BBEdit’s Balance While Typing option is on, you get a brief notification
whenever you type an unbalanced closing parenthesis, bracket, or smart quote. In

http://daringfireball.net/projects/bbdiff

the old Mac OS, this notification took the form of briefly flashing the menu bar at
the top of the screen. Easy to notice, but subtle enough so as not to be annoying.
On Mac OS X, however, the call that flashed the menu bar under Mac OS
and earlier does something different: it briefly flashes the entire screen. Definitely
noticeable, and in many BBEdit users’ opinion, too noticeable.

BBEdit offers a much more --like notification: a transparent status window
and fades in and out.(similar the ones the system displays when you change the
volume or display brightness).

In an exceedingly nice touch, if the unmatched character is itself a smart quote,
BBEdit uses straight quotes to delimit the character in the notification message.

Pricing and Discounts

The price for a new license has been raised to , but through the end of October,
BBEdit remains available for the old price of . Upgrades from version are
, and upgrades from any previous version are only . Plus, BBEdit’s long-standing
“cross-grade” discount remains: owners of Dreamweaver, GoLive, and BBEdit Lite can
purchase BBEdit for only . (Yes, BBEdit Lite, which was available free of charge.
No I don’t have something in my eye—I’m winking.)

	Brief Aside on the Case for Using Emacs or Vim
	BBEdit 8.0 First Impressions
	Multi-Document Interface
	Unicode and Text Encoding Improvements
	Text Factories
	Multi-File Searching
	Codeless Language Modules
	Plug-ins
	Support Files
	Document State
	Other Miscellaneous Improvements Based on Mac OS X Technology
	Other Details Worth Mentioning
	Pricing and Discounts

