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Simple Sinusoids

Neuronal Supervision of Hebbian Synaptic Plasticity
Christian D. Swinehart & L.F. Abbott
 Department of Biology & Volen Center for Complex Systems  |  Brandeis University, Waltham ma, usa

Error vs. Number & Proportion of Unique Inputs

Random Walk/Reinforcement Learning Supervisor

Principal Component-based Supervisor

The Modulation States of Three Input Neurons 
Over the Course of Learning

Final Target Approximation 
(after 600 training epochs)

Function Approximation Learning

Desired Output

Actual Output

Learning w/ Multiple Targets

Learning in Simple Networks Nature of the ‘Supervisor’

Response Modulation
with Hebbian Plasticity
(with 95% of inputs shared)

Response Modulation
with Hebbian Plasticity

Response 
Modulation Alone
(with 88% of inputs shared)
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Function Approximations with Two Output Units

<      <      >> Hebbian Learning

A major drawback of the traditional, synaptic approach to 
supervised learning is the lack of a plausible mechanism by 
which error signals generated by the supervisor could directly 
control synaptic plasticity.

In this study, the supervisor modifies intrinsic neuronal 
response properties, rather than synaptic strengths, to guide 
learning.

Recent work (Chance et al., 2002) has shown that the 
response properties of individual neurons can be modified 
through changes in the level and balance of their excitatory 
and inhibitory inputs.  This provides a pathway by which 
supervisory error signals can reach elements of a network to 
guide its modification during learning.

Synaptic plasticity occurs in parallel via unsupervised, 
Hebbian learning. Thus the supervisor can only influence 
synaptic modification indirectly, by affecting the excitability of 
the cells in a manner which will lead to Hebbian 
strengthening or weakening of connections.

A more realistic supervisor circuit 
would operate with more limited 
knowledge of the state of the network. 

One potential source of information is 
the pattern of correlated neural activity, 
which could be read out through 
simple feedback projections from the 
network cells to the supervisor.

Intrinsic Properties Modification

‘Shift’ of threshold ‘Gain’ modulation

<                    <                      >>

Error Signal

Firing Rate

Supervisor

Stimulus

Response Modulation-guided Learning
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Range & Limitations

Response Modulation-based Hebbian Learning Feedback-based Model

In networks with more than one output, each input cell may project to 
multiple target neurons—complicating the supervisor’s task. In the 
two-unit case, there must be a sufficient number of uniquely connected 
input neurons to allow for different target functions to be approximated.

However, even in cases with too much overlap for the supervisor alone 
to impose a proper activity pattern, the relatively weak bias it provides 
can direct Hebbian plasticity to approximate the two target functions.

Response Modulation coupled with Hebbian plasticity can approximate a wide variety of smooth, 
continuous functions. However it is limited by the Gaussian tunings of the input cells. This is most 
apparent in cases where the target function’s rate of change exceeds the maximal slope of the 
modulated gaussians.
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The Chicken & Egg Problem of Plasticity

As a correlation-based mechanism, Hebbian plasticity modifies 
connections as a function of preexisting patterns of activity within the 
network.

However, when network behavior is homogeneous (as is the case before 
training), there is no structured activity for Hebb to amplify.

Thus a correlation rule alone is not sufficient to generate a desired 
behavior appropriate to a given task.

Hebbian Learning Rule

Hebbian Learning modifies connections using purely local 
information: the pre- and post-synaptic firing rates.
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…while Response Modulation can influence behavior, but cannot 
make permanent, synaptic changes to the network

Hebbian plasticity can’t create something from nothing…
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