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This work addresses the long-standing problem of inducing a neural 
network to exhibit a desired behavior, and then modifying its 
synaptic connectivity to reproduce the behavior in the future. 
However, unlike traditional approaches there is no need for an 
implausible mechanism to propagate the error signal to the synapses.

Instead the supervisor’s actions are realized entirely through ordinary 
patterns of excitation and inhibition, and the synaptic modification 
occurs through simple, unsupervised hebbian learning.

We have demonstrated that the Response Modulation approach is 
capable of approximating a broad variety of functions, and that prior 
learning can be generalized to adapt to previously-unseen examples.

Finally, we have shown that while modifying individual neurons’ 
properties instead of their synapses does deprive the network of some 
flexibility, the degree of interference is manageable given properly 
sparse connectivity within the inputs.

We have shown that the supervisor can induce the network to 
perform its task. However in the absence of the supervisor-driven 
modulation, nothing in the network has actually changed, and it will 
behave just as it did before any ‘learning’ took place.

To be fully equivalent to the traditional network learning approach, 
the task must somehow be transferred to longer-term storage in the 
synapses.

When a simple hebbian synaptic plasticity rule is added to the 
network model, the information required by the network to perform 
the function approximation task is automatically transferred from the 
supervisor to the synapses through the modulation of intrinsic 
properties.  Although the task could not have been learned using 
hebbian learning by itself, this two-step process results in a network 
that can perform the task through properly tuned synaptic strengths, 
even when the supervisory modulatory signal is removed.

A major drawback of the traditional approach is the lack of a 
plausible mechanism by which error signals generated by the 
supervisor could reach individual synapses to guide their 
modification.

In this study, the supervisor modifies intrinsic neuronal 
response properties, rather than synaptic strengths, to guide 
learning.

Recent work (Chance et al., 2002) has shown that the 
response properties of individual neurons can be modified 
through changes in the level and balance of their excitatory 
and inhibitory inputs.  This provides a pathway by which 
supervisor error signals can reach elements of a network to 
guide its modification during learning.

In supervised learning, an external supervisor unit controls 
plasticity on the basis of a comparison between the actual 
output of the network and the desired target function.  The 
supervisor modifies the network to minimize the discrepancy, 
or ‘error’, between the actual and desired outputs.

Traditionally, this modification occurs through changes in 
synaptic strength.

Function approximation is a standard neural network 
paradigm for modeling learning processes. In it, a stimulus 
characterized by a single parameter (the ‘stimulus value’) 
drives a network to generate a firing rate in an output unit 
which matches a desired target function of that parameter.

Supervised learning through intrinsic property-
modulation is capable of fitting a variety of target 
functions. Here we see the network's approximation 
of:
	 a)	A sigmoid function
 	b)	A simple sinusoid
 	c)	A linear combination of (a) and (b)
 	d)	A sinusoid approaching the sampling frequency 
	 	 of the array of gaussian inputs.
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Uniqueness

When the same function is learned 
repeatedly, the final shift & gain values 
for each input neuron are not identical. 
However, they do cluster over a similar 
range of values.
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Hebbian Learning modifies connections using purely local 
information:  the pre- and post-synaptic firing rates.
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